Le principe du maximum et l'hypoellipticité globale
Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)
- page 1-10
Access Full Article
topHow to cite
topTaira, K.. "Le principe du maximum et l'hypoellipticité globale." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-10. <http://eudml.org/doc/111872>.
@article{Taira1984-1985,
author = {Taira, K.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {global hypoellipticity; maximum principle; propagation of singularities; Markov process},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le principe du maximum et l'hypoellipticité globale},
url = {http://eudml.org/doc/111872},
year = {1984-1985},
}
TY - JOUR
AU - Taira, K.
TI - Le principe du maximum et l'hypoellipticité globale
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - global hypoellipticity; maximum principle; propagation of singularities; Markov process
UR - http://eudml.org/doc/111872
ER -
References
top- [1] K. Amano: The global hypoellipticity of a class of degenerate elliptic-parabolic operators, à paraître. Zbl0574.35019
- [2] J.M. Bony: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. Zbl0176.09703MR262881
- [3] V.S. Fediĭ: On a criterion for hypoellipticity, Math. USSR Sb.14 (1971), 15-45. Zbl0247.35023
- [4] C. Fefferman and D.H. Phong: Subelliptic eigenvalue problems, Conference on Harmonic Analysis W. Beckner et al. ed. Wadsworth (1981), 590-606. Zbl0503.35071MR730094
- [5] D. Fujiwara and H. Omori: An example of a globally hypo-elliptic operator, Hokkaido Math. J.12 (1983), 293-297. Zbl0548.35020MR719969
- [6] S. Greenfield and N. Wallach: Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc.31 (1972), 112-114. Zbl0229.35023MR296508
- [7] C.D. Hill: A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J.20 (1970), 213-229. Zbl0205.10402MR287175
- [8] L. Hörmander: Hypoelliptic second order differential equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
- [9] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion processes, Kodansha, Tokyo and North-Holland, Amsterdam-Oxford - New-York, 1981. Zbl0495.60005MR637061
- [10] O.A. Oleĭnik and E.V. Radkevič: Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New-York, 1973. MR457908
- [11] R.M. Redheffer: The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J.21 (1971), 227-248. Zbl0235.35007MR422864
- [12] D.W. Stroock and S.R.S. Varadhan: On the support of diffusion processes with applications to the strong maximum principle, Proc. of 6-th Berkeley Symp. of Prob. and Math. Stat. Vol.III (1972), 333-359. Zbl0255.60056MR400425
- [13] D.W. Stroock and S.R.S. Varadhan: On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math.25 (1972), 651-713. Zbl0344.35041MR387812
- [14] K. Taira: Diffusion processes and partial differential equations, Academic Press, New-York, à paraître. Zbl0652.35003MR954835
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.