Le principe du maximum et l'hypoellipticité globale

K. Taira

Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)

  • page 1-10

How to cite

top

Taira, K.. "Le principe du maximum et l'hypoellipticité globale." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-10. <http://eudml.org/doc/111872>.

@article{Taira1984-1985,
author = {Taira, K.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {global hypoellipticity; maximum principle; propagation of singularities; Markov process},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le principe du maximum et l'hypoellipticité globale},
url = {http://eudml.org/doc/111872},
year = {1984-1985},
}

TY - JOUR
AU - Taira, K.
TI - Le principe du maximum et l'hypoellipticité globale
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - global hypoellipticity; maximum principle; propagation of singularities; Markov process
UR - http://eudml.org/doc/111872
ER -

References

top
  1. [1] K. Amano: The global hypoellipticity of a class of degenerate elliptic-parabolic operators, à paraître. Zbl0574.35019
  2. [2] J.M. Bony: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. Zbl0176.09703MR262881
  3. [3] V.S. Fediĭ: On a criterion for hypoellipticity, Math. USSR Sb.14 (1971), 15-45. Zbl0247.35023
  4. [4] C. Fefferman and D.H. Phong: Subelliptic eigenvalue problems, Conference on Harmonic Analysis W. Beckner et al. ed. Wadsworth (1981), 590-606. Zbl0503.35071MR730094
  5. [5] D. Fujiwara and H. Omori: An example of a globally hypo-elliptic operator, Hokkaido Math. J.12 (1983), 293-297. Zbl0548.35020MR719969
  6. [6] S. Greenfield and N. Wallach: Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc.31 (1972), 112-114. Zbl0229.35023MR296508
  7. [7] C.D. Hill: A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J.20 (1970), 213-229. Zbl0205.10402MR287175
  8. [8] L. Hörmander: Hypoelliptic second order differential equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
  9. [9] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion processes, Kodansha, Tokyo and North-Holland, Amsterdam-Oxford - New-York, 1981. Zbl0495.60005MR637061
  10. [10] O.A. Oleĭnik and E.V. Radkevič: Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New-York, 1973. MR457908
  11. [11] R.M. Redheffer: The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J.21 (1971), 227-248. Zbl0235.35007MR422864
  12. [12] D.W. Stroock and S.R.S. Varadhan: On the support of diffusion processes with applications to the strong maximum principle, Proc. of 6-th Berkeley Symp. of Prob. and Math. Stat. Vol.III (1972), 333-359. Zbl0255.60056MR400425
  13. [13] D.W. Stroock and S.R.S. Varadhan: On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math.25 (1972), 651-713. Zbl0344.35041MR387812
  14. [14] K. Taira: Diffusion processes and partial differential equations, Academic Press, New-York, à paraître. Zbl0652.35003MR954835

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.