Prolongement holomorphe d'applications CR

M. S. Baouendi

Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)

  • page 1-7

How to cite


Baouendi, M. S.. "Prolongement holomorphe d'applications CR." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-7. <>.

author = {Baouendi, M. S.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {holomorphic continuation; holomorphic extension of CR diffeomorphism},
language = {fre},
pages = {1-7},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Prolongement holomorphe d'applications CR},
url = {},
year = {1984-1985},

AU - Baouendi, M. S.
TI - Prolongement holomorphe d'applications CR
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 7
LA - fre
KW - holomorphic continuation; holomorphic extension of CR diffeomorphism
UR -
ER -


  1. [1] S.S. Abhyankar & T.T. Moh: A reduction theorem for divergent power series, Crelle J. Reine & Angew. Mat.241 (1970), 27-33. Zbl0191.04403MR259158
  2. [2] M.S. Baouendi, C.H. Chang& F. Treves: Microlocal hypo-analycity and extension of CR functions. J. Diff. Geom.18 (1983), 331-391. Zbl0575.32019MR723811
  3. [3] M.S. Baouendi, H. Jacobowitz & F. Treves: On the analyticity of CR mappings. (A paraître). Zbl0583.32021
  4. [4] M.S. Baouendi & L.P. Rothschild: CR Semirigid structures, (A paraître). 
  5. [5] M.S. Baouendi, L.P. Rothschild & F. Treves: CR structures with transversal group action and extendability of CR functions,(A paraître). Zbl0598.32019
  6. [6] M.S. Baouendi& F. Treves: About the holomorphic extension of CR functions on real hypersurfaces in complex space, Duke Math. J.51 (1984), 77-107. Zbl0564.32011MR744289
  7. [7] S. Bell& E. Ligocka: A simplification and extension of Fefferman's theorem on biholomorphic mappings, Inventiones Math.57 (1980), 283-289. Zbl0411.32010MR568937
  8. [8] T. Bloom & I. Graham: On "type" conditions for generic submanifolds of Cn, Inventiones Math.40 (1977), 217-243. Zbl0346.32013MR589930
  9. [9] M. Derridj: Le principe de réflexion en des points de faible pseudoconvexité pour des applications holomorphes propres, Inventiones Math.79 (1985). Zbl0538.32009MR774535
  10. [10] M. Derridj: Prolongement local d'applications holomorphes propres en des points faiblement convexes, to appear. 
  11. [11] K. Diederich& J.E. Fornaess: Pseudoconvex domains with real analytic boundary, Annals Math.107 (1978), 371-384. Zbl0378.32014MR477153
  12. [12] K. Diederich& S.M. Webster: A reflection principle for degenerate real hypersurfaces. Duke Math. J.47 (1980), 835-843. Zbl0451.32008MR596117
  13. [13] C.K. Han: Analyticity of CR equivalence between some real hypersurfaces in Cn, with degenerate Levi form, Inv. Math.23 (1983), 51-69. Zbl0517.32007MR707348
  14. [14] J.J. Kohn: Boundary behavious of ∂ on weakly pseudoconvex manifolds of dimension two. J. Diff. Geom.6 (1972), 523-542. Zbl0256.35060
  15. [15] H. Lewy: On the boundary behaviour of holomorphic mappings, Acad. Naz. Lincei35 (1977). 
  16. [16] L. Nirenberg, S.M. Webster& P. Yang: Local boundary regularity of holomorphic mappings, Comm. Pure Applied Math.33 (1980), 305-338. Zbl0436.32018MR562738
  17. [17] S.I. Pincuk: On the analytic continuation of holomorphic mappings, Mat. Sbornik98 (140) (1975), 416-435; Math. USSR Sbornik27 (1975), 375-392. Zbl0366.32010MR393562

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.