Critical points at infinity in the variational calculus

A. Bahri

Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986)

  • page 1-31

How to cite

top

Bahri, A.. "Critical points at infinity in the variational calculus." Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986): 1-31. <http://eudml.org/doc/111897>.

@article{Bahri1985-1986,
author = {Bahri, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {pseudo-orbits of contacts; semilinear Dirichlet problem; limiting Sobolev exponents; critical point at infinity},
language = {eng},
pages = {1-31},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Critical points at infinity in the variational calculus},
url = {http://eudml.org/doc/111897},
year = {1985-1986},
}

TY - JOUR
AU - Bahri, A.
TI - Critical points at infinity in the variational calculus
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1985-1986
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 31
LA - eng
KW - pseudo-orbits of contacts; semilinear Dirichlet problem; limiting Sobolev exponents; critical point at infinity
UR - http://eudml.org/doc/111897
ER -

References

top
  1. [1] A. Marino, G. Prodi, Metodi pertubattive nella teoria di Morse, B.U.M.I.4, 11 (1975). Zbl0311.58006MR418150
  2. [2] S. Smale, The Mathematics of time, Springer1980. Zbl0451.58001MR607330
  3. [3] C.C. Conley, R.W. Easton, Isolated invariant sets and isolating blocks; (conf. on Qualitative theory of nonlinear differential and integral equations, Univ. of Wisconsin, Madison, 1978). 
  4. [4] Morris W. Hirsch, Differential topology, Springer1976. Zbl0356.57001MR448362
  5. [5] A. Bahri, Pseudo-orbits of contact forms, preprint 1986. Zbl0696.58038MR961252
  6. [6] A. Bahri, Un problème variationnel sans compacité en géométrie de contact, Note aux Comptes Rendus de l'Académie des Sciences, Paris, Juillet 1984. 
  7. [7] D. Jerison, J. Lee, A subelliptic, non-linear eigenvalue problem and scalar curvature on CR manifolds, Microlocal Analysis, Amer. Math. Soc.Comtemporary Math. Series27 (1984), 57-63. Zbl0577.53035MR741039
  8. [8] S.S. Chern, R. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, MSRI, Berkeley, October 1984. Zbl0561.53039MR797427
  9. [9] J. Sacks, K. Uhlenbeck, Ann. Math.113 (1981), 1-24. Zbl0462.58014MR604040
  10. [10] P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case, Rev. Mat. Iberoamericana1, 1 (1985), 145-201. Zbl0704.49005MR834360
  11. [11] Y.T. Siu, S.T. Yau, Compact Kähler manifolds of positive bisectional curvature, Inv. Mathematicae59 (1980), 189-204. Zbl0442.53056MR577360
  12. [12] H. Brezis, J.M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rat. Mech. An.89, 1 (1985), 21-56. Zbl0584.49024MR784102
  13. [13] C.H. Taubes, Path connected Yang-Mills moduli spaces, J. Diff. Geom.19 (1984), 337-392. Zbl0551.53040MR755230
  14. [14] A. Bahri, to appear. 
  15. [15] A. Bahri, J.M. Coron, Sur une équation elliptique non linéaire avec l'exposant critique de Sobolev, Note aux C.R. Acad. Sc. Paris, série I, t. 301 (1985). Zbl0601.35040MR808623
  16. [16] A. Bahri, J.M. Coron, to appear. 
  17. [17] A. Bahri, J.M. Coron, Vers une théorie des points critiques à l'infini, Séminaire Bony-Sjöstrand-Meyer 1984-85, exposé n° VIII. Zbl0585.58004
  18. [18] M. Struwe, A global existence result for elliptic boundary value problems involving limiting nonlinearities, à paraître. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.