Critical points at infinity in the variational calculus
Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986)
- page 1-31
Access Full Article
topHow to cite
topBahri, A.. "Critical points at infinity in the variational calculus." Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986): 1-31. <http://eudml.org/doc/111897>.
@article{Bahri1985-1986,
author = {Bahri, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {pseudo-orbits of contacts; semilinear Dirichlet problem; limiting Sobolev exponents; critical point at infinity},
language = {eng},
pages = {1-31},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Critical points at infinity in the variational calculus},
url = {http://eudml.org/doc/111897},
year = {1985-1986},
}
TY - JOUR
AU - Bahri, A.
TI - Critical points at infinity in the variational calculus
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1985-1986
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 31
LA - eng
KW - pseudo-orbits of contacts; semilinear Dirichlet problem; limiting Sobolev exponents; critical point at infinity
UR - http://eudml.org/doc/111897
ER -
References
top- [1] A. Marino, G. Prodi, Metodi pertubattive nella teoria di Morse, B.U.M.I.4, 11 (1975). Zbl0311.58006MR418150
- [2] S. Smale, The Mathematics of time, Springer1980. Zbl0451.58001MR607330
- [3] C.C. Conley, R.W. Easton, Isolated invariant sets and isolating blocks; (conf. on Qualitative theory of nonlinear differential and integral equations, Univ. of Wisconsin, Madison, 1978).
- [4] Morris W. Hirsch, Differential topology, Springer1976. Zbl0356.57001MR448362
- [5] A. Bahri, Pseudo-orbits of contact forms, preprint 1986. Zbl0696.58038MR961252
- [6] A. Bahri, Un problème variationnel sans compacité en géométrie de contact, Note aux Comptes Rendus de l'Académie des Sciences, Paris, Juillet 1984.
- [7] D. Jerison, J. Lee, A subelliptic, non-linear eigenvalue problem and scalar curvature on CR manifolds, Microlocal Analysis, Amer. Math. Soc.Comtemporary Math. Series27 (1984), 57-63. Zbl0577.53035MR741039
- [8] S.S. Chern, R. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, MSRI, Berkeley, October 1984. Zbl0561.53039MR797427
- [9] J. Sacks, K. Uhlenbeck, Ann. Math.113 (1981), 1-24. Zbl0462.58014MR604040
- [10] P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case, Rev. Mat. Iberoamericana1, 1 (1985), 145-201. Zbl0704.49005MR834360
- [11] Y.T. Siu, S.T. Yau, Compact Kähler manifolds of positive bisectional curvature, Inv. Mathematicae59 (1980), 189-204. Zbl0442.53056MR577360
- [12] H. Brezis, J.M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rat. Mech. An.89, 1 (1985), 21-56. Zbl0584.49024MR784102
- [13] C.H. Taubes, Path connected Yang-Mills moduli spaces, J. Diff. Geom.19 (1984), 337-392. Zbl0551.53040MR755230
- [14] A. Bahri, to appear.
- [15] A. Bahri, J.M. Coron, Sur une équation elliptique non linéaire avec l'exposant critique de Sobolev, Note aux C.R. Acad. Sc. Paris, série I, t. 301 (1985). Zbl0601.35040MR808623
- [16] A. Bahri, J.M. Coron, to appear.
- [17] A. Bahri, J.M. Coron, Vers une théorie des points critiques à l'infini, Séminaire Bony-Sjöstrand-Meyer 1984-85, exposé n° VIII. Zbl0585.58004
- [18] M. Struwe, A global existence result for elliptic boundary value problems involving limiting nonlinearities, à paraître.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.