CR mappings between real hypersurfaces in complex space

M. S. Baouendi; L. P. Rothschild

Séminaire Équations aux dérivées partielles (Polytechnique) (1987-1988)

  • page 1-4

How to cite

top

Baouendi, M. S., and Rothschild, L. P.. "CR mappings between real hypersurfaces in complex space." Séminaire Équations aux dérivées partielles (Polytechnique) (1987-1988): 1-4. <http://eudml.org/doc/111941>.

@article{Baouendi1987-1988,
author = {Baouendi, M. S., Rothschild, L. P.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {essential finiteness; local holomorphic extension of smooth CR mappings on real analytic hypersurfaces},
language = {eng},
pages = {1-4},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {CR mappings between real hypersurfaces in complex space},
url = {http://eudml.org/doc/111941},
year = {1987-1988},
}

TY - JOUR
AU - Baouendi, M. S.
AU - Rothschild, L. P.
TI - CR mappings between real hypersurfaces in complex space
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1987-1988
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 4
LA - eng
KW - essential finiteness; local holomorphic extension of smooth CR mappings on real analytic hypersurfaces
UR - http://eudml.org/doc/111941
ER -

References

top
  1. [1] J. D'Angelo, The notion of formal essential finiteness for smooth real hypersurfaces, Indiana J. Math (to appear). Zbl0628.32024
  2. [2] M.S. Baouendi, S. Bell and L.P. Rothschild, Mappings of three dimensional CR manifolds and their holomorphic extension, (to appear) Duke J. Math. Zbl0655.32015MR948531
  3. [3] M.S. Baouendi, H. Jacobowitz and F. Treves, On the analyticity of CR mappings, Ann. Math.122 (1985), 365-400. Zbl0583.32021MR808223
  4. [4] M.S. Baouendi and L.P. Rothschild, Germs of CR maps between real analytic hypersurfaces. (to appear) Inventiones Math. Zbl0653.32020MR952280
  5. [5] M.S. Baouendi and L.P. Rothschild, Geometric properties of smooth and holomorphic mappings between hypersurfaces in complex space (to appear). Zbl0702.32014
  6. [6] S. Bell and D. Catlin, Boundary regularity of proper holomorphic mappings. Duke Math. J.49 (1982), 385-396. Zbl0475.32011MR659947
  7. [7] K. Diederich and J.E. Fornaess, Boundary regularity of proper holomorphic mappings, Inventiones Math.67 (1982), 363-384. Zbl0501.32010MR664111
  8. [8] K. Diederich and J.E. Fornaess, Proper holomorphic mappings between real-analytic pseudoconvex domains in Cn, (preprint). Zbl0661.32025
  9. [9] H. Lewy, On the boundary behavior of holomorphic mapping, Acad. Naz. Lincei35 (1977), 1-8. 
  10. [10] S.I. Pincuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J.15 (1974), 909-917. Zbl0289.32011MR355109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.