Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël[1]; Igor Rodnianski[2]

  • [1] Institut de Mathématiques de Toulouse Université Toulouse III France
  • [2] Mathematics Department Princeton University USA

Séminaire Équations aux dérivées partielles (2008-2009)

  • Volume: 115, page 1-12

Abstract

top
This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

How to cite

top

Raphaël, Pierre, and Rodnianski, Igor. "Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems." Séminaire Équations aux dérivées partielles 115 (2008-2009): 1-12. <http://eudml.org/doc/11195>.

@article{Raphaël2008-2009,
abstract = {This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the $\{\mathbb\{S\}\}^2$ target in all homotopy classes and for the equivariant critical $SO(4)$ Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.},
affiliation = {Institut de Mathématiques de Toulouse Université Toulouse III France; Mathematics Department Princeton University USA},
author = {Raphaël, Pierre, Rodnianski, Igor},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {wave map problem; Yang-Mills problem; initial data; blow-up; self-similar solution; boot-strap argument},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems},
url = {http://eudml.org/doc/11195},
volume = {115},
year = {2008-2009},
}

TY - JOUR
AU - Raphaël, Pierre
AU - Rodnianski, Igor
TI - Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 115
SP - 1
EP - 12
AB - This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the ${\mathbb{S}}^2$ target in all homotopy classes and for the equivariant critical $SO(4)$ Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.
LA - eng
KW - wave map problem; Yang-Mills problem; initial data; blow-up; self-similar solution; boot-strap argument
UR - http://eudml.org/doc/11195
ER -

References

top
  1. Atiyah, M.; Drinfield, V. G; Hitchin, N..; Manin, Y. I. Construction of instantons. Phys. Lett. A65 (1978), 185-187. Zbl0424.14004MR598562
  2. Belavin A.A., Polyakov A.M., Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22 (1975), 245-247 (Russian). 
  3. Belavin A.A., Polyakov A.M., Schwarz, A.S, Tyupkin Y.S, Pseudoparticle solutions of the Yang-Mills equation, Phus. Lett B59, 85 (1975). MR434183
  4. Bizon, P.; Chmaj, T.; Tabor, Z., Formation of singularities for equivariant ( 2 + 1 ) -dimensional wave maps into the 2-sphere. Nonlinearity 14 (2001), no. 5, 1041–1053. Zbl0988.35010MR1862811
  5. Bizon, P.; Ovchinnikov, Y. N.; Sigal, I. M., Collapse of an instanton. Nonlinearity 17 (2004), no. 4, 1179–1191. Zbl1059.35081MR2069700
  6. Bogomol’nyi, E.B., The stability of classical solutions. Soviet J. Nuclear Phys. 24 (1976), no. 4, 449–454 (Russian). MR443719
  7. Cazenave T., Shatah J., Tahvildar-Zadeh S., Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields. Ann. I.H.P., section A 68 (1998), no. 3, 315–349. Zbl0918.58074MR1622539
  8. Christodoulou, D.; Tahvildar-Zadeh, A. S., On the regularity of spherically symmetric wave maps. Comm. Pure Appl. Math. 46 (1993), no. 7, 1041–1091. Zbl0744.58071MR1223662
  9. Côte, R., Instability of nonconstant harmonic maps for the ( 1 + 2 ) -dimensional equivariant wave map system. Int. Math. Res. Not. 2005, no. 57, 3525–3549. Zbl1101.35055MR2199855
  10. Côte, R.; Kenig, C. E.; Merle, F., Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system. Comm. Math. Phys. 284 (2008), no. 1, 203–225 Zbl1170.35064MR2443303
  11. Donaldson, S. K.; Kronheimer, P. B. Geometry of Four-manifolds, Oxford, Clarendon Press, 1990. Zbl0820.57002MR1079726
  12. Isenberg J.; Liebling, S.L., Singularity Formation in 2+1 Wave Maps. J. Math. Phys. 43 (2002), 678–683. Zbl1052.58032MR1872523
  13. Klainerman, S., Machedon, M., On the regularity properties of a model problem related to wave maps. Duke Math. J. 87 (1997), no. 3, 553–589 Zbl0878.35075MR1446618
  14. Klainerman S., Selberg, Z., Remark on the optimal regularity for equations of wave maps type. Comm. Partial Differential Equations 22 (1997), no. 5-6, 901–918. Zbl0884.35102MR1452172
  15. Kavian, O.; Weissler, F. B., Finite energy self-similar solutions of a nonlinear wave equation. Comm. Partial Differential Equations 15 (1990), no. 10, 1381–1420. l Zbl0726.35085MR1077471
  16. Kenig, C.E.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201 (2008), no. 2, 147–212. Zbl1183.35202MR2461508
  17. Krieger J., Schlag, W., Concentration compactness for critical wave maps, preprint, arXiv:0908.2474. Zbl06004782
  18. Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615. Zbl1139.35021MR2372807
  19. Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for the critical Yang-Mills problem, Adv. Math. 221 (2009), no. 5, 1445–1521. Zbl1183.35203MR2522426
  20. Lemou, M.; Mehats, F.; Raphaël, P., Stable self similar blow up solutions to the relativistic gravitational Vlasov-Poisson system, J. Amer. Math. Soc. 21 (2008), no. 4, 1019–1063. Zbl1206.82092MR2425179
  21. Manton, N.; Sutcliffe, P. Topological solitons. Cambridge University Press, 2004. Zbl1100.37044MR1703506
  22. Martel, Y.; Merle, F., Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation. J. Amer. Math. Soc. 15 (2002), no. 3, 617–664. Zbl0996.35064MR1896235
  23. Merle, F.; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), no. 1, 157–222. Zbl1185.35263MR2150386
  24. Merle, F.; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. Zbl1061.35135MR1995801
  25. Merle, F.; Raphaël, P., On universality of blow up profile for L 2 critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). Zbl1067.35110MR2061329
  26. Merle, F.; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. Zbl1075.35077MR2169042
  27. Merle, F.; Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. Zbl1062.35137MR2116733
  28. Perelman, G., On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2 (2001), no. 4, 605–673. Zbl1007.35087MR1852922
  29. Raphaël, P., Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann. 331 (2005), no. 3, 577–609. Zbl1082.35143MR2122541
  30. Raphaël, P.; Rodnianski, R., Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills, submitted. Zbl1284.35358
  31. Rodnianski, I., Sterbenz, J., On the formation of singularities in the critical O ( 3 ) σ -model, to appear Ann. Math. Zbl1213.35392MR2128434
  32. Shatah, J., Weak solutions and development of singularities of the SU ( 2 ) σ -model. Comm. Pure Appl. Math. 41 (1988), no. 4, 459–469 Zbl0686.35081MR933231
  33. Shatah, J.; Tahvildar-Zadeh, A. S., On the Cauchy problem for equivariant wave maps. Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754. Zbl0811.58059MR1278351
  34. Sterbenz J., Tataru, D., Energy dispersed arge data wave maps in 2 + 1 dimensions, preprint, arXiv:0906.3384. Zbl1218.35129
  35. Sterbenz J., Tataru, D., Regularity of Wave-Maps in dimension 2 + 1 , preprint, arXiv:0907.3148. Zbl1218.35057
  36. Struwe, M., Equivariant wave maps in two space dimensions. Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56 (2003), no. 7, 815–823. Zbl1033.53019MR1990477
  37. Tao, T., Global regularity of wave maps. II. Small energy in two dimensions. Comm. Math. Phys. 224 (2001), no. 2, 443–544. Zbl1020.35046MR1869874
  38. Tao, T., Geometric renormalization of large energy wave maps. Zbl1087.58019
  39. Tao, T., Global regularity of wave maps III-VII, preprints, arXiv:0908.0776. 
  40. Tataru, D., On global existence and scattering for the wave maps equation. Amer. J. Math. 123 (2001), no. 1, 37–77. Zbl0979.35100MR1827277
  41. Ward, R. Slowly moving lumps in the P 1 model in ( 2 + 1 ) dimensions, Phys. Lett. B158 (1985), 424–428. MR802039
  42. Witten, E., Some exact multipseudoparticle solutions of the classical Yang-Mills theory. Phys. Rev. Lett. 38 (1977) 121–124. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.