Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems
Pierre Raphaël[1]; Igor Rodnianski[2]
- [1] Institut de Mathématiques de Toulouse Université Toulouse III France
- [2] Mathematics Department Princeton University USA
Séminaire Équations aux dérivées partielles (2008-2009)
- Volume: 115, page 1-12
Access Full Article
topAbstract
topHow to cite
topRaphaël, Pierre, and Rodnianski, Igor. "Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems." Séminaire Équations aux dérivées partielles 115 (2008-2009): 1-12. <http://eudml.org/doc/11195>.
@article{Raphaël2008-2009,
abstract = {This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the $\{\mathbb\{S\}\}^2$ target in all homotopy classes and for the equivariant critical $SO(4)$ Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.},
affiliation = {Institut de Mathématiques de Toulouse Université Toulouse III France; Mathematics Department Princeton University USA},
author = {Raphaël, Pierre, Rodnianski, Igor},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {wave map problem; Yang-Mills problem; initial data; blow-up; self-similar solution; boot-strap argument},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems},
url = {http://eudml.org/doc/11195},
volume = {115},
year = {2008-2009},
}
TY - JOUR
AU - Raphaël, Pierre
AU - Rodnianski, Igor
TI - Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 115
SP - 1
EP - 12
AB - This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the ${\mathbb{S}}^2$ target in all homotopy classes and for the equivariant critical $SO(4)$ Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.
LA - eng
KW - wave map problem; Yang-Mills problem; initial data; blow-up; self-similar solution; boot-strap argument
UR - http://eudml.org/doc/11195
ER -
References
top- Atiyah, M.; Drinfield, V. G; Hitchin, N..; Manin, Y. I. Construction of instantons. Phys. Lett. A65 (1978), 185-187. Zbl0424.14004MR598562
- Belavin A.A., Polyakov A.M., Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22 (1975), 245-247 (Russian).
- Belavin A.A., Polyakov A.M., Schwarz, A.S, Tyupkin Y.S, Pseudoparticle solutions of the Yang-Mills equation, Phus. Lett B59, 85 (1975). MR434183
- Bizon, P.; Chmaj, T.; Tabor, Z., Formation of singularities for equivariant -dimensional wave maps into the 2-sphere. Nonlinearity 14 (2001), no. 5, 1041–1053. Zbl0988.35010MR1862811
- Bizon, P.; Ovchinnikov, Y. N.; Sigal, I. M., Collapse of an instanton. Nonlinearity 17 (2004), no. 4, 1179–1191. Zbl1059.35081MR2069700
- Bogomol’nyi, E.B., The stability of classical solutions. Soviet J. Nuclear Phys. 24 (1976), no. 4, 449–454 (Russian). MR443719
- Cazenave T., Shatah J., Tahvildar-Zadeh S., Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields. Ann. I.H.P., section A 68 (1998), no. 3, 315–349. Zbl0918.58074MR1622539
- Christodoulou, D.; Tahvildar-Zadeh, A. S., On the regularity of spherically symmetric wave maps. Comm. Pure Appl. Math. 46 (1993), no. 7, 1041–1091. Zbl0744.58071MR1223662
- Côte, R., Instability of nonconstant harmonic maps for the -dimensional equivariant wave map system. Int. Math. Res. Not. 2005, no. 57, 3525–3549. Zbl1101.35055MR2199855
- Côte, R.; Kenig, C. E.; Merle, F., Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system. Comm. Math. Phys. 284 (2008), no. 1, 203–225 Zbl1170.35064MR2443303
- Donaldson, S. K.; Kronheimer, P. B. Geometry of Four-manifolds, Oxford, Clarendon Press, 1990. Zbl0820.57002MR1079726
- Isenberg J.; Liebling, S.L., Singularity Formation in 2+1 Wave Maps. J. Math. Phys. 43 (2002), 678–683. Zbl1052.58032MR1872523
- Klainerman, S., Machedon, M., On the regularity properties of a model problem related to wave maps. Duke Math. J. 87 (1997), no. 3, 553–589 Zbl0878.35075MR1446618
- Klainerman S., Selberg, Z., Remark on the optimal regularity for equations of wave maps type. Comm. Partial Differential Equations 22 (1997), no. 5-6, 901–918. Zbl0884.35102MR1452172
- Kavian, O.; Weissler, F. B., Finite energy self-similar solutions of a nonlinear wave equation. Comm. Partial Differential Equations 15 (1990), no. 10, 1381–1420. l Zbl0726.35085MR1077471
- Kenig, C.E.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201 (2008), no. 2, 147–212. Zbl1183.35202MR2461508
- Krieger J., Schlag, W., Concentration compactness for critical wave maps, preprint, arXiv:0908.2474. Zbl06004782
- Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615. Zbl1139.35021MR2372807
- Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for the critical Yang-Mills problem, Adv. Math. 221 (2009), no. 5, 1445–1521. Zbl1183.35203MR2522426
- Lemou, M.; Mehats, F.; Raphaël, P., Stable self similar blow up solutions to the relativistic gravitational Vlasov-Poisson system, J. Amer. Math. Soc. 21 (2008), no. 4, 1019–1063. Zbl1206.82092MR2425179
- Manton, N.; Sutcliffe, P. Topological solitons. Cambridge University Press, 2004. Zbl1100.37044MR1703506
- Martel, Y.; Merle, F., Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation. J. Amer. Math. Soc. 15 (2002), no. 3, 617–664. Zbl0996.35064MR1896235
- Merle, F.; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), no. 1, 157–222. Zbl1185.35263MR2150386
- Merle, F.; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. Zbl1061.35135MR1995801
- Merle, F.; Raphaël, P., On universality of blow up profile for critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). Zbl1067.35110MR2061329
- Merle, F.; Raphaël, P., Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. Zbl1075.35077MR2169042
- Merle, F.; Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. Zbl1062.35137MR2116733
- Perelman, G., On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2 (2001), no. 4, 605–673. Zbl1007.35087MR1852922
- Raphaël, P., Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann. 331 (2005), no. 3, 577–609. Zbl1082.35143MR2122541
- Raphaël, P.; Rodnianski, R., Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills, submitted. Zbl1284.35358
- Rodnianski, I., Sterbenz, J., On the formation of singularities in the critical -model, to appear Ann. Math. Zbl1213.35392MR2128434
- Shatah, J., Weak solutions and development of singularities of the -model. Comm. Pure Appl. Math. 41 (1988), no. 4, 459–469 Zbl0686.35081MR933231
- Shatah, J.; Tahvildar-Zadeh, A. S., On the Cauchy problem for equivariant wave maps. Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754. Zbl0811.58059MR1278351
- Sterbenz J., Tataru, D., Energy dispersed arge data wave maps in dimensions, preprint, arXiv:0906.3384. Zbl1218.35129
- Sterbenz J., Tataru, D., Regularity of Wave-Maps in dimension , preprint, arXiv:0907.3148. Zbl1218.35057
- Struwe, M., Equivariant wave maps in two space dimensions. Dedicated to the memory of Jürgen K. Moser. Comm. Pure Appl. Math. 56 (2003), no. 7, 815–823. Zbl1033.53019MR1990477
- Tao, T., Global regularity of wave maps. II. Small energy in two dimensions. Comm. Math. Phys. 224 (2001), no. 2, 443–544. Zbl1020.35046MR1869874
- Tao, T., Geometric renormalization of large energy wave maps. Zbl1087.58019
- Tao, T., Global regularity of wave maps III-VII, preprints, arXiv:0908.0776.
- Tataru, D., On global existence and scattering for the wave maps equation. Amer. J. Math. 123 (2001), no. 1, 37–77. Zbl0979.35100MR1827277
- Ward, R. Slowly moving lumps in the model in dimensions, Phys. Lett. B158 (1985), 424–428. MR802039
- Witten, E., Some exact multipseudoparticle solutions of the classical Yang-Mills theory. Phys. Rev. Lett. 38 (1977) 121–124.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.