Spectrum distribution function and variational principle for automorphic operators on hyperbolic space
Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989)
- page 1-19
Access Full Article
topHow to cite
topEfremov, D. V., and Shubin, M. A.. "Spectrum distribution function and variational principle for automorphic operators on hyperbolic space." Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989): 1-19. <http://eudml.org/doc/111977>.
@article{Efremov1988-1989,
author = {Efremov, D. V., Shubin, M. A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {spectrum; distribution function; variational principle; hyperbolic space; periodic operator; Weyl formula; invariant operators; unbounded operators; Sobolev embedding theorem},
language = {eng},
pages = {1-19},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Spectrum distribution function and variational principle for automorphic operators on hyperbolic space},
url = {http://eudml.org/doc/111977},
year = {1988-1989},
}
TY - JOUR
AU - Efremov, D. V.
AU - Shubin, M. A.
TI - Spectrum distribution function and variational principle for automorphic operators on hyperbolic space
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1988-1989
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 19
LA - eng
KW - spectrum; distribution function; variational principle; hyperbolic space; periodic operator; Weyl formula; invariant operators; unbounded operators; Sobolev embedding theorem
UR - http://eudml.org/doc/111977
ER -
References
top- [A] M.F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras. Astérisque, 32-33 (1976) 43-72. Zbl0323.58015MR420729
- [B] A. Borel, Compact Clifford-Klein forms of symmetric spaces. Topology, 2, (1963), 111-122. Zbl0116.38603MR146301
- [Br] R. Brooks, The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv., 56 (1981) 581-598. Zbl0495.58029MR656213
- [B-S] T.E. Bogorodskaja, M.A. Shubin, Variational principle and asymptotic behaviour of the density of states for random pseudodifferential operators. Trudy Sem. Petrovskogo, 11 (1986), 98-117 (in Russian). Zbl0598.60069MR834169
- [C-M-S] L.A. Coburn, L.A. Moyer, I.M. Singer, C*-algebras of almost periodic differential operators. Acta Math., 130 (1973), 279-307. Zbl0263.47042MR415407
- [D-G-M] A. Debiard, B. Gaveau, E. Mazet.Theoremes de Comparison en Geometrie Riemannienne. Publ. RIMS, Kyoto Univ.12 (1976), p.391-425. Zbl0382.31007MR431294
- [D] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann). Paris, Gauthier-Villars, 1969. Zbl0088.32304MR352996
- [Don] H. Donnelly, The differential form spectrum of hyperbolic space. Manuscripta math., 33 (1981), 365-385. Zbl0464.58020MR612619
- [D-F] H. Donnelly, Ch. Fefferman, L2-cohomology and index theorem for the Bergmann metric. Ann. Math., 118 (1983), 593-618. Zbl0532.58027MR727705
- [D-G] J. Duistermaat, V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math., 29 (1975), 39-79. Zbl0307.35071MR405514
- [E] M.S.P. Eastham, The spectral theory of periodic differential operators. Edinburgh and London, Scottish Acad. Press, 1973. Zbl0287.34016
- [E-E] A.V. Efremov, D.V. Efremov, The spectrum asymptotics of elliptic operator invariant with respect to discrete group of diffeomorphisms. Vestnik Moskov. Univ. ser.I, Matem., Meh., 1986, n 1, 57-59 (in Russian). Zbl0622.35083
- [Ef] D.V. Efremov, Spectral function asymptotics of second order elliptic operators on Lobachevsky spaces. Vestnik Moscov. Univ. ser. I, Matem., Meh., 1988, n3, p.72-74 (in Russian). Zbl0666.35070
- [F-S] B.V. Fedosov, M.A. Shubin, Index of random elliptic operators I. - Matem. Sbornik, v.106 (148) (1978), 108-140. (in Russian). Zbl0409.47030MR501190
- [G] A.I. Gusev, Density of states and other spectral invariants of self-adjoint random elliptic operators.- Matem. Sbornik, 104 (1977), 207-226 (in Russian). Zbl0376.35050MR510082
- [Hi] M. Hilsum, Signature operator on Lipschitz manifolds and unbounded Kasparov bi-modules. Lecture Notes in Math., 1132 (1983), 254-288. Zbl0602.46069MR799572
- [Hö] L. Hörmander, Analysis of linear partial differential operators, vol. 3. Berlin, Springer, 1985. Zbl0612.35001
- [M-S1] G.A. Meladze, M.A. Shubin, Properly supported uniform pseudodifferential operators on unimodular Lie groups. Trudy Sem. Petrovskogo, 11 (1986), 74-97 (in Russian). Zbl0597.58035MR834168
- [M-S2] G.A. Meladze, M.A. Shubin, Functional calculus of pseudodifferential operators on unimodular Lie groups. Trudy Sem. Petrovskogo,12 (1987), 164-200 (in Russian). Zbl0659.35111MR933058
- [N-S1] S.P. Novikov, M.A. Shubin, Morse inequalities and von Neumann II 1-factors. Doklady Akad. Nauk SSSR, 289 (1986), 289-292 (in Russian). Zbl0647.46049MR856461
- [N-S2] S.P. Novikov, M.A. Shubin, Morse theory and von Neumann invariants of non simply connected manifolds. Uspehi Matem. Nauk, 41(1986), n 5, p.222-223 (in Russian).
- [Ro] J. Roe, An index theorem on open manifolds I, II. Preprint, Oxford, 1986. Zbl0657.58041MR918459
- [S1] R.T. Seeley, Complex powers of an elliptic operator. Proc. Symp. Pure Math., v.10, p.288-307 (1967). Zbl0159.15504MR237943
- [Sh1] M.A. Shubin.Weyl theorem for the Schrödinger operator with almost periodic potential. Vestnik Moskov. Univ. ser.I, Mat. Meh.31 (1976), n 2, 84-88 (in Russian). Zbl0327.35022MR410118
- [Sh2] M.A. Shubin, Density of states of self-adjoint elliptic operators with almost periodic coefficients. Trudy Sem. Petrovskogo, 3 (1978), p.243-275 (in Russian). Zbl0493.35041
- [Sh3] M.A. Shubin, Pseudodifferential operators and spectral theory. Springer-Verlag, 1987. Zbl0616.47040MR883081
- [Sh4] M.A. Shubin, The spectral theory and index of elliptic operators with almost periodic coefficients. Uspehi Matem. Nauk, 34 (1979), n 2, 95-135. (in Russian). Zbl0431.47027MR535710
- [S] M.M. Skriganov, Geometrical and arithmetical methods in the spectral theory of multydimensional periodic operators. Trudy Matem. Inst. Akad. Nauk SSSR, 171 (1985), Leningrad, Nauka, (in Russian). Zbl0567.47004MR798454
- [T] M. Takesaki, Theory of operator algebras I. Springer Verlag, 1979. Zbl0436.46043MR548728
- [V] S.M. Vishik, Some analogs of Riemann (-function. Funkc. Anal. i Ego Pril., 9 (1975), n 3, p.85-86 (in Russian). Zbl0328.58012
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.