Le problème spectral inverse pour les systèmes AKNS périodiques sur la droite réelle

B. Grebert; J. C. Guillot

Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990)

  • page 1-10

How to cite

top

Grebert, B., and Guillot, J. C.. "Le problème spectral inverse pour les systèmes AKNS périodiques sur la droite réelle." Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990): 1-10. <http://eudml.org/doc/112001>.

@article{Grebert1989-1990,
author = {Grebert, B., Guillot, J. C.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {inverse spectral problem; Dirac system; isospectral set},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le problème spectral inverse pour les systèmes AKNS périodiques sur la droite réelle},
url = {http://eudml.org/doc/112001},
year = {1989-1990},
}

TY - JOUR
AU - Grebert, B.
AU - Guillot, J. C.
TI - Le problème spectral inverse pour les systèmes AKNS périodiques sur la droite réelle
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1989-1990
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - inverse spectral problem; Dirac system; isospectral set
UR - http://eudml.org/doc/112001
ER -

References

top
  1. [AKNS] M.J. Ablowitz, D.J. Kaup, A.C. Newell et H. Segur.The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math.53, (1974), p.249-315 Zbl0408.35068MR450815
  2. [Gar-Tru 1] J. Garnett et E. Trubowitz.Gaps and bands of one dimensional periodic Schrödinger operators. Comment. Math. Helvetici, 59, (1984), p.258-312. Zbl0554.34013MR749109
  3. [Gar-Tru 2] J. Garnett et E. Trubowitz.Gaps and bands of one dimensional periodic Schrödinger operators II. Comm. Math. Helvetici62, (1987), p.18-37. Zbl0649.34034MR882963
  4. [Ge-Sch-Si] Commutation methods applied to the mKdV-equation. Publication du département de Mathématiques, Université du Missouri, Columbia (1990). 
  5. [Ka] Th. Kappeler.On the periodic spectrum of the one dimensional Schrödinger equation. Comm. Math. Helvetici65, (1990), p.1-3. Zbl0703.34085MR1036124
  6. [Mar-Ost 1] V.A. Marchenko and I.V. Ostrovsky.A characterisation of the spectrum of Hill's operator. Math. USSR. Sbornik, 97, (1975), p.493-554. Zbl0343.34016
  7. [Mar-Ost 2] V.A. Marchenko and I.V. Ostrovsky.Approximation of periodic by finite-zone potentials. Selecta Math. Sovietici6, (1987), p. 101-106. Zbl0624.31005
  8. [Mis 1] T.V. Misyura.Properties of the spectra of periodic and antiperiodic boundary value problems generated by Dirac operators I, II (in Russian)Teor. Funktsü Funktsional Anal. i Prilozhen30, (1978), p.90-101; 31, (1979), p.102-109. Zbl0441.34020
  9. [Mis 2] T.V. Misyura.Finite zone Dirac operators (in Russian). Teor. Funktsü Funktsional Anal. i Prilozhen33, (1980), p. 107-111. Zbl0464.47019MR568021
  10. [Pö-Tru] J. Pöschel et E. Trubowitz.Inverse Spectral Theory. Academic Press (1987). Zbl0623.34001MR894477
  11. [Zah-Sha] V. Zakharov et A. Shabat, A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem. Func. Anal. and Appl.8, (1974), p.226-235. Zbl0303.35024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.