Rectifiabilité quantifié et le problème du voyageur de commerce

G. David

Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)

  • page 1-10

How to cite

top

David, G.. "Rectifiabilité quantifié et le problème du voyageur de commerce." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-10. <http://eudml.org/doc/112006>.

@article{David1990-1991,
author = {David, G.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {traveling salesman; higher dimensional related results; quantitative rectifiability},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Rectifiabilité quantifié et le problème du voyageur de commerce},
url = {http://eudml.org/doc/112006},
year = {1990-1991},
}

TY - JOUR
AU - David, G.
TI - Rectifiabilité quantifié et le problème du voyageur de commerce
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - traveling salesman; higher dimensional related results; quantitative rectifiability
UR - http://eudml.org/doc/112006
ER -

References

top
  1. [BJ] C. Bishop & P. JonesHarmonic measure and arclength. Ann. of Math., to appear. Zbl0726.30019MR1078268
  2. [CMM] R.R. Coifman, A. McIntosh & Y. MeyerL'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes. Ann. of Math.116 (1982), 361-387. Zbl0497.42012MR672839
  3. [DS1] G. David & S. SemmesSingular integrals on surfaces: Au-delà des graphes lipschitziens. Astérisque, SMF, à paraître. 
  4. [DS2] G. David & S. SemmesQuantified rectifiability and Lipschitz mappings. Preprint. 
  5. [Do] J.R. DorronsoroA characterization of potentials spaces. Proc. A.M.S.95 (1985), 21-31. Zbl0577.46035MR796440
  6. [Fa] K. FalconerThe geometry of fractal sets. Cambridge Univ. Press, 1984. Zbl0587.28004MR867284
  7. [Fe] H. FedererGeometric measure theory. Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag1963. Zbl0176.00801
  8. [Jn1] P. JonesSquare functions, Cauchy integrals, analytic capacity, and harmonic measure. Proc. Conf. on Harmonic analysis and partial differential equations, El Escorial 1987 (ed. J. Garcia-Cuerva), pp. 24-68. Springer-Varlag, Lecture notes in math. 1384 (1989). Zbl0675.30029MR1013815
  9. [Jn2] P. JonesRectifiable sets and the traveling salesman problem. Inventiones Mathematicae102 (1990), 1-16. Zbl0731.30018MR1069238
  10. [Ok] K. OkikioluCharacterization of subsets of rectifiable curves in IRn. Preprint. 
  11. [Ma] P. MattilaLecture notes on geometric measure theory. Universidad de Extramadura (Espagne), 1986. Zbl0638.28006MR931079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.