Remarques sur la formulation cinétique des lois de conservation scalaires

B. Perthame

Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991)

  • page 1-13

How to cite

top

Perthame, B.. "Remarques sur la formulation cinétique des lois de conservation scalaires." Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991): 1-13. <http://eudml.org/doc/112023>.

@article{Perthame1990-1991,
author = {Perthame, B.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {entropy solutions; conservation laws; monoatomic isentropic gas dynamics; approximating semilinear hyperbolic problem; regularity and compactness results for the solutions; hypoelliptic regularization properties; compressible Euler system},
language = {fre},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Remarques sur la formulation cinétique des lois de conservation scalaires},
url = {http://eudml.org/doc/112023},
year = {1990-1991},
}

TY - JOUR
AU - Perthame, B.
TI - Remarques sur la formulation cinétique des lois de conservation scalaires
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1990-1991
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - fre
KW - entropy solutions; conservation laws; monoatomic isentropic gas dynamics; approximating semilinear hyperbolic problem; regularity and compactness results for the solutions; hypoelliptic regularization properties; compressible Euler system
UR - http://eudml.org/doc/112023
ER -

References

top
  1. [1] Y. Brenier, Résolution d'équations d'évolution quasilinéaires. J. Diff. Eq.50 (3), (1986), 375-390. Zbl0549.35055MR723577
  2. [2] R. Di Perna, P.L.Lions, Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math.XLII (1989), 729-757. Zbl0698.35128MR1003433
  3. [3] R. Di Perna, P.L. Lions, Y. Meyer, LP regularity of velocity averages. A paraître dans Ann. IHP Anal. Non Lin., 1991. Zbl0763.35014MR1127927
  4. [4] P. Gérard, Moyennisation et régularité deux microlocale. Preprint. Zbl0725.35003
  5. [5] F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport. C.R. Acad. Sc. Paris301 (1985), 341-344. Zbl0591.45007MR808622
  6. [6] F. Golse, P.L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal.76 (1), (1988), 110-125. Zbl0652.47031MR923047
  7. [7] L. Hörmander, Hypoelliptic second order differential équations, Acta Math.119, 1967, 147-171. Zbl0156.10701MR222474
  8. [8] S. Kruzkov, First order quasi-linear équations with several space variables. Math. USSR Sb.10 (1970), 217-273. Zbl0215.16203
  9. [9] P.L. Lions, B. Perthame, E. Tadmor, Article en préparation. Note C.R.A.S. t. Série 1 (1991). 
  10. [10] B. Perthame, Higher moments for kinetic équations ; Applications to Vlasov-Poisson and Fokker-Planck Equations. Math. Methods in the Appl. Sc.13 (1900), 441-452. Zbl0717.35017MR1078593
  11. [11] B. Perthame, E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws. A paraître dans Comm. in Math. Phys. Zbl0729.76070
  12. [12] J. Smoller, Shock waves and reaction diffusion equations. Springer-VerlagNew York, Heidelberg-Berlin, (1982). Zbl0508.35002MR1301779
  13. [13] L. Tartar, In Research notes in Mathematics, 39, Henriot-Watt Symp. Vol.4Pitman PressBoston, London (1975), 136-211. 
  14. [14] B. Perthame, Entropy Boltzmann schemes for gas dynamics equationsSIAM J. Num. Anal.28 (1), (1991). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.