A non solvable operator satisfying condition ( Ψ )

Nicolas Lerner

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-22

How to cite

top

Lerner, Nicolas. "A non solvable operator satisfying condition ($\Psi $)." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-22. <http://eudml.org/doc/112029>.

@article{Lerner1991-1992,
author = {Lerner, Nicolas},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {local solvability properties},
language = {eng},
pages = {1-22},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {A non solvable operator satisfying condition ($\Psi $)},
url = {http://eudml.org/doc/112029},
year = {1991-1992},
}

TY - JOUR
AU - Lerner, Nicolas
TI - A non solvable operator satisfying condition ($\Psi $)
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 22
LA - eng
KW - local solvability properties
UR - http://eudml.org/doc/112029
ER -

References

top
  1. [1] R. Beals, C. Fefferman: On local solvability of linear partial differential equations, Ann. of Math.97, (1973), 482-498. Zbl0256.35002MR352746
  2. [2] J.-M. Bony: Second microlocalization and propagation of singularities for semi-linear hyperbolic equations and related topics, Mizohata (Ed) Kinokuwa (1986) 11-49. Zbl0669.35073MR925240
  3. [3] J.-M. Bony, N. Lerner: Quantification asymptotique et microlocalisations d'ordre supérieur I, Ann.ENS, 4° série,tome 22, 1989, 377-433. Zbl0753.35005MR1011988
  4. [4] C. Fefferman, D.H. Phong: The uncertainty principle and sharp Gårding inequalities, CPAM34(1981), 285-331. Zbl0458.35099MR611747
  5. [5] L. Hörmander: The Analysis of Linear Partial Differential Operators (1985) Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 4 volumes. Zbl0601.35001
  6. [6] N. Lerner: Sufficiency of condition (ψ) for local solvability in two dimensions, Ann. of Math., 128 (1988), 243-258. Zbl0682.35112
  7. [7] N. Lerner: An iff solvability condition for the oblique derivative problem, Séminaire EDP 90-91, Ecole Polytechnique, exposé n° 18. Zbl0737.35171MR1131591
  8. [8] S. Mizohata: Solutions nulles et solutions non- analytiques, J. Math.Kyoto Un.1, 271-302, (1962). Zbl0106.29601MR142873
  9. [9] R.D. Moyer: Local solvability in two dimensions: necessary conditions for the principal type case, University of Kansas, Mimeographed manuscript, (1978). 
  10. [10] L. Nirenberg, F. Treves: On local solvability of linear partial differential equations. I. Necessary conditions. Zbl0191.39103
  11. II Sufficient conditions. Correction. Comm.Pure Appl. Math., 23 (1970) 1-38 and 459-509; 24 (1971) 279-288. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.