A non solvable operator satisfying condition ( Ψ )

Nicolas Lerner

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-22

How to cite

top

Lerner, Nicolas. "A non solvable operator satisfying condition ($\Psi $)." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-22. <http://eudml.org/doc/112029>.

@article{Lerner1991-1992,
author = {Lerner, Nicolas},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {local solvability properties},
language = {eng},
pages = {1-22},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {A non solvable operator satisfying condition ($\Psi $)},
url = {http://eudml.org/doc/112029},
year = {1991-1992},
}

TY - JOUR
AU - Lerner, Nicolas
TI - A non solvable operator satisfying condition ($\Psi $)
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 22
LA - eng
KW - local solvability properties
UR - http://eudml.org/doc/112029
ER -

References

top
  1. [1] R. Beals, C. Fefferman: On local solvability of linear partial differential equations, Ann. of Math.97, (1973), 482-498. Zbl0256.35002MR352746
  2. [2] J.-M. Bony: Second microlocalization and propagation of singularities for semi-linear hyperbolic equations and related topics, Mizohata (Ed) Kinokuwa (1986) 11-49. Zbl0669.35073MR925240
  3. [3] J.-M. Bony, N. Lerner: Quantification asymptotique et microlocalisations d'ordre supérieur I, Ann.ENS, 4° série,tome 22, 1989, 377-433. Zbl0753.35005MR1011988
  4. [4] C. Fefferman, D.H. Phong: The uncertainty principle and sharp Gårding inequalities, CPAM34(1981), 285-331. Zbl0458.35099MR611747
  5. [5] L. Hörmander: The Analysis of Linear Partial Differential Operators (1985) Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 4 volumes. Zbl0601.35001
  6. [6] N. Lerner: Sufficiency of condition (ψ) for local solvability in two dimensions, Ann. of Math., 128 (1988), 243-258. Zbl0682.35112
  7. [7] N. Lerner: An iff solvability condition for the oblique derivative problem, Séminaire EDP 90-91, Ecole Polytechnique, exposé n° 18. Zbl0737.35171MR1131591
  8. [8] S. Mizohata: Solutions nulles et solutions non- analytiques, J. Math.Kyoto Un.1, 271-302, (1962). Zbl0106.29601MR142873
  9. [9] R.D. Moyer: Local solvability in two dimensions: necessary conditions for the principal type case, University of Kansas, Mimeographed manuscript, (1978). 
  10. [10] L. Nirenberg, F. Treves: On local solvability of linear partial differential equations. I. Necessary conditions. Zbl0191.39103
  11. II Sufficient conditions. Correction. Comm.Pure Appl. Math., 23 (1970) 1-38 and 459-509; 24 (1971) 279-288. 

NotesEmbed ?

top

You must be logged in to post comments.