Conjoint spectral asymptotics for the families of commuting operators and for operators with the periodic hamiltonian flow

Victor Ivrii

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-11

How to cite

top

Ivrii, Victor. "Conjoint spectral asymptotics for the families of commuting operators and for operators with the periodic hamiltonian flow." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-11. <http://eudml.org/doc/112032>.

@article{Ivrii1991-1992,
author = {Ivrii, Victor},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {periodic flow; pseudodifferential operators; critical values; joint spectrum; spectral properties of Hamiltonians},
language = {eng},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Conjoint spectral asymptotics for the families of commuting operators and for operators with the periodic hamiltonian flow},
url = {http://eudml.org/doc/112032},
year = {1991-1992},
}

TY - JOUR
AU - Ivrii, Victor
TI - Conjoint spectral asymptotics for the families of commuting operators and for operators with the periodic hamiltonian flow
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - eng
KW - periodic flow; pseudodifferential operators; critical values; joint spectrum; spectral properties of Hamiltonians
UR - http://eudml.org/doc/112032
ER -

References

top
  1. [1] V. Ivrii.Semiclassical microlocal analysis and precise spectral asymptotics. Preprint 1. Ecole Polytechnique, Preprint M964.1190, November 1990. Zbl0906.35003
  2. [2] V. Ivrii.Semiclassical microlocal analysis and precise spectral asymptotics. Preprint 2. Ecole Polytechnique, Preprint M969.0191, January 1991 Zbl0906.35003
  3. [3] V. Ivrii.Semiclassical microlocal analysis and precise spectral asymptotics. Preprint 3. Ecole Polytechnique, Preprint M971.0291, February 1991. Zbl0906.35003
  4. [4] V. Ivrii.Semiclassical microlocal analysis and precise spectral asymptotics. Preprint 6. Ecole Polytechnique, Preprint M1018.1091, October 1991. Zbl0906.35003
  5. [5] V. Ivrii.Semiclassical spectral asymptotics. Summer School on Semiclassical Analysis, Nantes, June, 1991. To appear in Asterisque. Zbl0839.35092MR1205176
  6. [6] Y. Colin de Verdiere.Sur les spectres des opérateurs elliptiques á bicaractéristiques toutes périodiques, Comment. math. helv., 54, no 3,p.508-522, (1979) and references here. Zbl0459.58014MR543346
  7. [7] Y. Colin de Verdiere.Spectre conjoint d'opérateurs qui commutent. Math. Z., 171, p.51-73, (1980) and references here. Zbl0478.35073MR566483
  8. [8] A.-M. Charbonnel.Comportement semi-classique du spectre conjoint d'opérateurs pseudodifferentiels qui commutent. Asympt. Anal.1, p.227-261 (1988) and references here. Zbl0665.35080MR962310
  9. [8] V.V. Guillemin, S. Sternberg.On the spectra of commuting pseudodifferential operators. Lect. Notes Pure Appl. Math., 48, p.149-165 (1985). Zbl0502.58036
  10. [9] A. Weinstein.Asymptotics of the eigenvalues; clusters for Laplacian plus a potential. Duke Math. J., 44, p.883-892 (1977). Zbl0385.58013MR482878

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.