Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes

Roger Temam

Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)

  • page 1-11

How to cite


Temam, Roger. "Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-11. <>.

author = {Temam, Roger},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes},
url = {},
year = {1991-1992},

AU - Temam, Roger
TI - Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - fre
UR -
ER -


  1. [1] A.V. Babin, M.I. Vishik, Attractors of evolutions equations, North-Holland, Amsterdam, 1992. Zbl0778.58002MR1156492
  2. [2] P. Constantin, C. Foias, O. Manley, R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech.150, (1985), p.427-440. Zbl0607.76054MR794051
  3. [3] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral Manifolds and InertialManifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, (1989). Zbl0683.58002MR966192
  4. [4] P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc., (1985), vol.53. Zbl0567.35070MR776345
  5. [5] P. Constantin, C. Foias, R. Temam, On the dimension of the attractors in twodimensional turbulence, Physica D., 30, (1988), p.284-296. Zbl0658.58030MR947902
  6. [6] A. Debussche, R. Temam, Inertial manifolds and the slow manifolds in meteorology, Diff. Int. Equ., 4, (1991), p.897-931. Zbl0753.35043MR1123343
  7. [7] T. Dubois, F. Jauberteau, R. Temam, Solutions of the incompressible Navier-Stokes equations by the nonlinear Galerkin Method, to appear. Zbl0783.76068MR1242960
  8. [8] C. Foias, G.R. Sell, R. Temam, Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Serie I, 301 (1985), 139-142. Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eqs., 73 (1988), 309-353. Zbl0591.35062MR943945
  9. [9] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear non Selfadjoint Operators, Translations of Mathematical Monographs, vol, 18. Amer. Math. Soc., 1969. Zbl0181.13504MR246142
  10. [10] J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol 25, AMS Providence. Zbl0642.58013MR941371
  11. [11] F. Jauberteau, C. Rosier, R. Temam, The nonlinear Galerkin method in computational fluid dynamics, AppliedNumerical Mathematics, 6,(1989) 190, p.361-370. Zbl0702.76077MR1062286
  12. [12] F. Jauberteau, C. Rosier, R. Temam, A nonlinear Galerkin Method for the Navier-Stokes equations, Computer Math. in Appl. Mechanics and Engineering, 80, (1990), p.245-260. Zbl0722.76039MR1067953
  13. [13] M. Kwak, Finite dimensional inertial forms for the 2D Navier-Stokes equations, University of Minnesota, AHPCRC, Preprint, 1991. Zbl0765.35034
  14. [14] O.A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equation, J. Soviet Math.3, n°4, (1975), p.458-479. Zbl0336.35081
  15. [15] O.A. Ladyzhenskaya, On the determination of minimal global B- attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Institute, Leningrad1987. 
  16. [16] J. Lamini, F. Pascal, R. Temam, Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comp. Mech., to appear Zbl0771.76039MR1221201
  17. [17] C.E. Leith, Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, (1980), p.958-968. MR576479
  18. [18] J. Mallet-Paret, G.R. Sell, Inertial manifolds,for reaction-diffusion equation in higher space dimension, J. Amer. Math. Soc., I, (1988), 805-866. Zbl0674.35049MR943276
  19. [19] R. Temam, Inertial manifolds, The mathematical Intelligencer, 12, n.° 4, (1990), p.68-74. Zbl0711.58025MR1076537
  20. [20] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics Applied Mathematical Sciences, vol. 68, Springer Verlag, New York, 1988. Zbl0662.35001MR953967
  21. [21] J.J. Tribbia, Nonlinear initialization on an equatorial Beta-plane, Mon. Wea. Rev., 107, (1979), 704-713. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.