Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992)
- page 1-11
Access Full Article
topHow to cite
topTemam, Roger. "Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes." Séminaire Équations aux dérivées partielles (Polytechnique) (1991-1992): 1-11. <http://eudml.org/doc/112038>.
@article{Temam1991-1992,
author = {Temam, Roger},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-11},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes},
url = {http://eudml.org/doc/112038},
year = {1991-1992},
}
TY - JOUR
AU - Temam, Roger
TI - Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1991-1992
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 11
LA - fre
UR - http://eudml.org/doc/112038
ER -
References
top- [1] A.V. Babin, M.I. Vishik, Attractors of evolutions equations, North-Holland, Amsterdam, 1992. Zbl0778.58002MR1156492
- [2] P. Constantin, C. Foias, O. Manley, R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech.150, (1985), p.427-440. Zbl0607.76054MR794051
- [3] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral Manifolds and InertialManifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, (1989). Zbl0683.58002MR966192
- [4] P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc., (1985), vol.53. Zbl0567.35070MR776345
- [5] P. Constantin, C. Foias, R. Temam, On the dimension of the attractors in twodimensional turbulence, Physica D., 30, (1988), p.284-296. Zbl0658.58030MR947902
- [6] A. Debussche, R. Temam, Inertial manifolds and the slow manifolds in meteorology, Diff. Int. Equ., 4, (1991), p.897-931. Zbl0753.35043MR1123343
- [7] T. Dubois, F. Jauberteau, R. Temam, Solutions of the incompressible Navier-Stokes equations by the nonlinear Galerkin Method, to appear. Zbl0783.76068MR1242960
- [8] C. Foias, G.R. Sell, R. Temam, Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Serie I, 301 (1985), 139-142. Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eqs., 73 (1988), 309-353. Zbl0591.35062MR943945
- [9] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear non Selfadjoint Operators, Translations of Mathematical Monographs, vol, 18. Amer. Math. Soc., 1969. Zbl0181.13504MR246142
- [10] J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol 25, AMS Providence. Zbl0642.58013MR941371
- [11] F. Jauberteau, C. Rosier, R. Temam, The nonlinear Galerkin method in computational fluid dynamics, AppliedNumerical Mathematics, 6,(1989) 190, p.361-370. Zbl0702.76077MR1062286
- [12] F. Jauberteau, C. Rosier, R. Temam, A nonlinear Galerkin Method for the Navier-Stokes equations, Computer Math. in Appl. Mechanics and Engineering, 80, (1990), p.245-260. Zbl0722.76039MR1067953
- [13] M. Kwak, Finite dimensional inertial forms for the 2D Navier-Stokes equations, University of Minnesota, AHPCRC, Preprint, 1991. Zbl0765.35034
- [14] O.A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equation, J. Soviet Math.3, n°4, (1975), p.458-479. Zbl0336.35081
- [15] O.A. Ladyzhenskaya, On the determination of minimal global B- attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Institute, Leningrad1987.
- [16] J. Lamini, F. Pascal, R. Temam, Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comp. Mech., to appear Zbl0771.76039MR1221201
- [17] C.E. Leith, Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, (1980), p.958-968. MR576479
- [18] J. Mallet-Paret, G.R. Sell, Inertial manifolds,for reaction-diffusion equation in higher space dimension, J. Amer. Math. Soc., I, (1988), 805-866. Zbl0674.35049MR943276
- [19] R. Temam, Inertial manifolds, The mathematical Intelligencer, 12, n.° 4, (1990), p.68-74. Zbl0711.58025MR1076537
- [20] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics Applied Mathematical Sciences, vol. 68, Springer Verlag, New York, 1988. Zbl0662.35001MR953967
- [21] J.J. Tribbia, Nonlinear initialization on an equatorial Beta-plane, Mon. Wea. Rev., 107, (1979), 704-713.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.