On the profiles of nonlinear geometric optics

J. L. Joly; G. Métivier; J. Rauch

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-14

How to cite

top

Joly, J. L., Métivier, G., and Rauch, J.. "On the profiles of nonlinear geometric optics." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-14. <http://eudml.org/doc/112060>.

@article{Joly1992-1993,
author = {Joly, J. L., Métivier, G., Rauch, J.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {profile equation; high-frequency solutions},
language = {eng},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {On the profiles of nonlinear geometric optics},
url = {http://eudml.org/doc/112060},
year = {1992-1993},
}

TY - JOUR
AU - Joly, J. L.
AU - Métivier, G.
AU - Rauch, J.
TI - On the profiles of nonlinear geometric optics
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - eng
KW - profile equation; high-frequency solutions
UR - http://eudml.org/doc/112060
ER -

References

top
  1. [G] J. Glimm, Solutions in the large for nonlinear systems of conservation laws, Comm. Pure Appl. Math.18(1965), 685-715. Zbl0141.28902MR194770
  2. [GL] J. Glimm and P.D. Lax, Decay of solutions of systems of nonlinear hyperbolic hyperbolic conservation laws, Memoirs A.M.S.101, 1970. Zbl0204.11304
  3. [Je] A. Jeffrey, Breakdown of the solution to a completely exceptional system of hyperbolic equations, J. Math. Anal. Appl.45(1974) 375-381. Zbl0281.35058MR333472
  4. [Jo] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math.37(1974) 377-405. Zbl0302.35064MR369934
  5. [JMR1] J-L. Joly, G. Metivier, and J. Rauch, Resonant one dimensional nonlinear geometric optics, Journal of Functional Analysis, to appear. Zbl0851.35023MR1220985
  6. [JMR2] J-L. Joly, G. Metivier, and J. Rauch.Formal and rigorous nonlinear high frequency hyperbolic waves, pp. 121-143 in Proceedings of Varenna Conference on Nonlinear Hyperbolic Equations and Field Theory, M.K. Murthy and S. Spagnolo eds., Pitman Research Notes in Math. 1992 Zbl0824.35077MR1175206
  7. [JMR3] J-L. Joly, G. Metivier, and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., to appear Zbl0815.35066MR1219817
  8. [JMR4] J-L. Joly, G. Metivier. and J. Rauch, Unbounded variation amplification for 3x3 systems of conservation laws, preprint. 
  9. [H] J. Hunter, Strongly nonlinear hyperbolic waves, in Notes on Numerical Fluid Dynamics Vol.24, Nonlinear Hyperbolic Equations, eds. J. Ballman and R. Jeltsch, Vieweg, Braunschweig, 1989. Zbl0689.35083MR991371
  10. [L] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math.10(1957), 537-566. Zbl0081.08803MR93653
  11. [MR] A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves I, a single space variable. Stud.Appl.Math.71(1984)149-179. Zbl0572.76066MR760229
  12. [P] R. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics, Stud. Appl. Math.71(1984)263-270. Zbl0669.76104MR975486
  13. [R] J. Rauch, BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one, Comm.Math.Phys.106(1986)484-489. Zbl0619.35073MR859822
  14. [S] S. Schochet, Resonant nonlinear geometric optics for weak solutions of conservation laws, preprint. Zbl0856.35080MR1297667

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.