Semilinear diffraction of conormal waves (joint work with Melrose and Sa Barreto)

M. Zworski

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-21

How to cite


Zworski, M.. "Semilinear diffraction of conormal waves (joint work with Melrose and Sa Barreto)." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-21. <>.

author = {Zworski, M.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {propagation of singularities; conormal regularity},
language = {eng},
pages = {1-21},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Semilinear diffraction of conormal waves (joint work with Melrose and Sa Barreto)},
url = {},
year = {1992-1993},

AU - Zworski, M.
TI - Semilinear diffraction of conormal waves (joint work with Melrose and Sa Barreto)
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 21
LA - eng
KW - propagation of singularities; conormal regularity
UR -
ER -


  1. [1] V. Arnold Wave frontevolution and equivariant Morse lemma. Comm. Pure Appl. Math.28(1976), 557-582. Zbl0343.58003MR436200
  2. [2] M. BealsSelf Spreading and Strength of Singularities for Solutions to Semilinear Equations. Ann. of Math.118(1983), 187-214. Zbl0522.35064MR707166
  3. [3] M. BealsPropagation of Smoothness for Nonlinear Second Order Strictly Hyperbolic Equations. Proc. Symp. Pure Math.43(1985), 21-45. Zbl0575.35062MR812282
  4. [4] M. Beals and G. MétivierProgressing Waves Solutions to Certain Nonlinear Mixed Problems. Duke Math. J.53(1986), 125-137. Zbl0613.35050MR835799
  5. [5] M. Beals and G. MétivierReflection of Transversal Progressing Waves in Nonlinear Strictly Hyperbolic Problems. Amer. J. Math.109(1987), 335-366. Zbl0633.35051MR882427
  6. [6] J.-M. BonyCalcul symbolic et propagation des singularités pour les équations aux dérivées partielles nonlinéaires. Ann. Sci. Ecole Norm. Sup.14, 209-246 Zbl0495.35024MR631751
  7. [7] J.-M. BonyInteractions des singularités pour les équations aux dérivées partielles nonlinéaires. Sem. Goulaouic-Meyer-Schwarz1984. Zbl0498.35017
  8. [8] J.-Y. CheminInteractions des trois ondes dans les equations semilinéaires strictement hyperbolique d'ordre 2. Comm. P.D.E.12(11)(1987), 1203-1225. Zbl0651.35049MR888459
  9. [9] F. David and M. WilliamsSingularities of Solutions to Semilinear Boundary value ProblemsAmer. J. Math.109(1987), 1087-1109. Zbl0659.35068MR919004
  10. [10] J.-M. Delort.Conormalité des ondes semi-lineaires le long des caustique. Amer. Jour. Math.113(1991), 593-651. Zbl0758.35005MR1118456
  11. [11] L. Hörmander.The Analysis of Linear Partial Differential OperatorsSpringer-Verlag, 1983- 1985. 
  12. [12] B. Lascar.Singularités des solutions d'équations aux dérivées partielles nonlinéaires. C. R. Acad. Sci. Paris287(1978), 521-529. Zbl0387.35018MR512097
  13. [13] G. Lebeau.Problème de Cauchy semi-linéaire en 3 dimensions d'espace. J. Func. Anal.78(1988), 185-196. Zbl0648.35057MR937638
  14. [14] G. Lebeau.Equations des ondes semi-linéaires II. Controle des singularites et caustiques semi-linéaires. Inv. Math.95(1989), 277-323. Zbl0686.35015MR974905
  15. [15] G. Lebeau.Singularités de solutions d'èquations d'ondes semi-linéaires. Ann. Scient. Éc.Norm.Sup.4e série 25(1992), 201-231. Zbl0776.35088MR1169352
  16. [16] E. LeichtmanRégularité microlocale pour des problèmes de Dirichlet non linéaires non caractéristiques d'ordre deux a bord peu régulier. Bull. S.M.F.115(1987), 457-489. Zbl0636.35056MR928019
  17. [17] R.B. Melrose.Equivalence of glancing hypersurfaces. Inv. Math.37(1976), 165-191. Zbl0354.53033MR436225
  18. [18] R.B. Melrose.Transformation of boundary value problems. Acta Math.147(1981), 149-236. Zbl0492.58023MR639039
  19. [19] R.B. Melrose.Forward Scattering by a Convex Obstacle. Comm. Pure and Appl. Math.23(1980), 461-499. Zbl0435.35066MR575734
  20. [20] R.B. Melrose.Semilinear waves with cusp singularities. Journées "Equations aux dérivées partielles"St.Jean-de-Montes, 1987. Zbl0656.35098MR920005
  21. [21] R.B. Melrose.The analysis on manifolds with corners. manuscript in preparation. Zbl0754.58035
  22. [22] R.B. Melrose.Calculus of conormal distributions on manifolds with corners. Internat. Math. Res. Notices3(1992), 51-61. Zbl0754.58035MR1154213
  23. [23] R.B. Melrose.Marked Lagrangian Distributions. preprint, 1989. 
  24. [24] R.B. Melrose and N. Ritter.Interaction of Nonlinear Waves for Semilinear Wave Equations. Ann. of Math.121 (1)(1985), 187-213. Zbl0575.35063MR782559
  25. [25] R.B. Melrose and N. Ritter.Interaction of Nonlinear Waves for Semilinear Wave Equations II. Ark. Mat.25(1987), 91-114. Zbl0653.35058MR918380
  26. [26] R.B. Melrose and A. Sá BarretoSemilinear Interaction of a Cusp and a Plane. preprint, 1992. Zbl0847.35086
  27. [27] R.B. Melrose, A. Sá Barreto and M. ZworskiSemilinear diffraction of conormal waves. preprint, 1992. Zbl0902.35004
  28. [28] R.B. Melrose and M. Taylor.Boundary Problems for the Wave Equation with Grazing and Gliding Rays. preprint, 1987. 
  29. [29] R.B. Melrose and M. Taylor.Near Peak Scattering and the Corrected Kirchhoff Approximation for a Convex Obstacle. Adv. in Math.55(3)(1985), 242-315. Zbl0591.58034MR778964
  30. [30] R.B. Melrose and M. Taylor.The radiation pattern of a diffractive wave near the shadow boundary. Comm. P.D.E11(6)(1986), 599-672. Zbl0632.35056MR837278
  31. [31] R.B. Melrose and G. Uhlmann.Lagrangian intersection and the Cauchy problem. Comm. Pure Appl. Math.2(1979), 483-519. Zbl0396.58006MR528633
  32. [32] J. Rauch and M. Reed.Propagation of singularities for semilinear hyperbolic wave equations in one space variable. Ann. of Math.111(1980), 531-552. Zbl0432.35055MR577136
  33. [33] J. Rauch and M. Reed.Singularities produced by nonlinear interaction of three progressing waves. Comm. P.D.E.7(9)(1982), 1117-1133. Zbl0502.35060MR673827
  34. [34] N. Ritter.Progressing wave solutions to nonlinear hyperbolic Cauchy problems. ThesisM.I.T. (June 1984). 
  35. [35] A. Sá Barreto.Interaction of Conormal Waves for Fully Semilinear Wave Equations. Jour. Func. Anal.89(1990), 233-273. Zbl0726.35083MR1042210
  36. [36] A. Sá Barreto.Second Microlocal Ellipticity and Propagation of Conormality for Semilinear Wave Equations. Jour. Func. Anal.102(1991), 47-71. Zbl0746.35021MR1138837
  37. [37] A. Sá Barreto.Evolution of Semilinear Waves with Swallowtail Singularities. preprint. Zbl0827.35078MR1291700
  38. [38] M. Sablé-Tougeron.Régularité microlocal pour des problemes aux limites non linéaires. Ann. Inst. Fourier36(1986), 39-82. Zbl0577.35004MR840713
  39. [39] M. Williams.Interaction involving gliding rays in boundary problems for semi-linear wave equations. Duke Math. Jour.59(2)(1989), 365-397. Zbl0798.35003MR1016895
  40. [40] C. XuPropagation au bord des singularités pour des problemes Dirichlet non-linéaires d'ordre deux., Actes Journées E.D.P., St. Jean-de-Monts, 1989, n° 20. Zbl0726.35026
  41. [41] M. Zworski.High frequency scattering by a convex obstacle. Duke Math. Jour.61(2) (1990), 545-634. Zbl0732.35060MR1074308
  42. [42] M. Zworski.Propagation of Submarked Lagrangian Singularities. unpublished, 1990. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.