Le problème des surfaces à courbure moyenne prescrite
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)
- page 1-17
Access Full Article
topHow to cite
topBethuel, F., and Rey, O.. "Le problème des surfaces à courbure moyenne prescrite." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-17. <http://eudml.org/doc/112068>.
@article{Bethuel1992-1993,
author = {Bethuel, F., Rey, O.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-17},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le problème des surfaces à courbure moyenne prescrite},
url = {http://eudml.org/doc/112068},
year = {1992-1993},
}
TY - JOUR
AU - Bethuel, F.
AU - Rey, O.
TI - Le problème des surfaces à courbure moyenne prescrite
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 17
LA - fre
UR - http://eudml.org/doc/112068
ER -
References
top- [1] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, to appear. Zbl0812.58018MR1261547
- [2] F. Bethuel, O. Rey, Multiple solutions to the Plateau problem for nonconstant mean curvature, to appear in Duke Math. J. Zbl0815.53010MR1262929
- [3] H. Brezis, J.M. Coron, Multiple solutions of H-Systems and Rellich's conjecture, Comm. Pure Applied Math.37, (1984), pp. 149-187. Zbl0537.49022MR733715
- [4] H. Brézis, J.M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rat. Mech. Anal.89, (1985), pp. 21-56. Zbl0584.49024MR784102
- [5] M. Grüter, Regularity of weak H-Surfaces, J. Reine Angew. Math. 329, pp. 1-15. Zbl0461.53029MR636440
- [6] E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann.127, (1954), pp. 258-287. Zbl0055.15303MR70013
- [7] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmumg und Anwendungen auf die Kapillaritätstheorie, Math. Z.112, (1969), pp. 205-213. Zbl0175.40403MR250208
- [8] D. Hoffmann, J. Spruck, Sobolev and isoperimetric inequalities for riemannian submanifolds, Comm. Pure Appl. Math.27, (1974), pp. 715-727, et 28, (1975), pp. 765-766. Zbl0295.53025MR365424
- [9] C. Morrey, Multiple integrals in the calculus of variations, Springer, Berlin (1966). Zbl0142.38701MR202511
- [10] O. Rey, Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann.291, (1991), pp. 123-146. Zbl0761.58052MR1125012
- [11] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of spheres, Ann. Math.113, (1981), pp. 1-24. Zbl0462.58014MR604040
- [12] J. Sacks, K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc.271, (1982), pp. 639-652. Zbl0527.58008MR654854
- [13] K. Steffen, On the existence of surfaces with prescribed mean curvature and boundary, Math. Z.146, (1976), pp. 113-135. Zbl0343.49016MR394394
- [14] K. Steffen, On the uniqueness of surfaces with prescribed mean curvature spanning a given contour, Arch. Rat. Mech. Anal.94, (1986), pp. 101-122. Zbl0678.49036MR832287
- [15] M. Struwe, Nonuniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rat. Anal.93, (1986), pp. 135-157. Zbl0603.49027MR823116
- [16] M. Struwe, Large H-surfaces via the mountain-pass Lemma, Math. Ann.270, (1985), pp. 441-459. Zbl0582.58010MR774369
- [17] M. Struwe, Plateau's problem and the Calculus of Variations, Mathematical Notes35, Princeton University Press (1988). Zbl0694.49028MR992402
- [18] M. Struwe, Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature, Analysis, et cetera, Academic Press, Boston (1990). Zbl0703.53049MR1039366
- [19] G. Wang, The Dirichlet problem for the equation of prescribed mean curvature, Ann. Inst. Henri Poincaré, Anal. non linéaire, 9, (1992), pp. 643-655. Zbl0784.53001MR1198307
- [20] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math.Analysis Appl.26, (1969), pp. 318-344. Zbl0181.11501MR243467
- [21] H. Wente, A general existence theorem for surfaces of constant mean curvature, Math. Z.120, (1971), pp. 277-278. Zbl0214.11101MR282300
- [22] H. Wente, The differential Δx = 2H(xu Λ xv) with vanishing boundary values, Proc. A.M.S.50, (1975), pp. 113-137. Zbl0313.35030
- [23] H. Werner, Das problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann.133, (1957), pp. 303-319. Zbl0077.34901MR95335
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.