Le problème des surfaces à courbure moyenne prescrite

F. Bethuel; O. Rey

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-17

How to cite

top

Bethuel, F., and Rey, O.. "Le problème des surfaces à courbure moyenne prescrite." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-17. <http://eudml.org/doc/112068>.

@article{Bethuel1992-1993,
author = {Bethuel, F., Rey, O.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-17},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le problème des surfaces à courbure moyenne prescrite},
url = {http://eudml.org/doc/112068},
year = {1992-1993},
}

TY - JOUR
AU - Bethuel, F.
AU - Rey, O.
TI - Le problème des surfaces à courbure moyenne prescrite
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 17
LA - fre
UR - http://eudml.org/doc/112068
ER -

References

top
  1. [1] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, to appear. Zbl0812.58018MR1261547
  2. [2] F. Bethuel, O. Rey, Multiple solutions to the Plateau problem for nonconstant mean curvature, to appear in Duke Math. J. Zbl0815.53010MR1262929
  3. [3] H. Brezis, J.M. Coron, Multiple solutions of H-Systems and Rellich's conjecture, Comm. Pure Applied Math.37, (1984), pp. 149-187. Zbl0537.49022MR733715
  4. [4] H. Brézis, J.M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rat. Mech. Anal.89, (1985), pp. 21-56. Zbl0584.49024MR784102
  5. [5] M. Grüter, Regularity of weak H-Surfaces, J. Reine Angew. Math. 329, pp. 1-15. Zbl0461.53029MR636440
  6. [6] E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann.127, (1954), pp. 258-287. Zbl0055.15303MR70013
  7. [7] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmumg und Anwendungen auf die Kapillaritätstheorie, Math. Z.112, (1969), pp. 205-213. Zbl0175.40403MR250208
  8. [8] D. Hoffmann, J. Spruck, Sobolev and isoperimetric inequalities for riemannian submanifolds, Comm. Pure Appl. Math.27, (1974), pp. 715-727, et 28, (1975), pp. 765-766. Zbl0295.53025MR365424
  9. [9] C. Morrey, Multiple integrals in the calculus of variations, Springer, Berlin (1966). Zbl0142.38701MR202511
  10. [10] O. Rey, Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann.291, (1991), pp. 123-146. Zbl0761.58052MR1125012
  11. [11] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of spheres, Ann. Math.113, (1981), pp. 1-24. Zbl0462.58014MR604040
  12. [12] J. Sacks, K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc.271, (1982), pp. 639-652. Zbl0527.58008MR654854
  13. [13] K. Steffen, On the existence of surfaces with prescribed mean curvature and boundary, Math. Z.146, (1976), pp. 113-135. Zbl0343.49016MR394394
  14. [14] K. Steffen, On the uniqueness of surfaces with prescribed mean curvature spanning a given contour, Arch. Rat. Mech. Anal.94, (1986), pp. 101-122. Zbl0678.49036MR832287
  15. [15] M. Struwe, Nonuniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rat. Anal.93, (1986), pp. 135-157. Zbl0603.49027MR823116
  16. [16] M. Struwe, Large H-surfaces via the mountain-pass Lemma, Math. Ann.270, (1985), pp. 441-459. Zbl0582.58010MR774369
  17. [17] M. Struwe, Plateau's problem and the Calculus of Variations, Mathematical Notes35, Princeton University Press (1988). Zbl0694.49028MR992402
  18. [18] M. Struwe, Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature, Analysis, et cetera, Academic Press, Boston (1990). Zbl0703.53049MR1039366
  19. [19] G. Wang, The Dirichlet problem for the equation of prescribed mean curvature, Ann. Inst. Henri Poincaré, Anal. non linéaire, 9, (1992), pp. 643-655. Zbl0784.53001MR1198307
  20. [20] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math.Analysis Appl.26, (1969), pp. 318-344. Zbl0181.11501MR243467
  21. [21] H. Wente, A general existence theorem for surfaces of constant mean curvature, Math. Z.120, (1971), pp. 277-278. Zbl0214.11101MR282300
  22. [22] H. Wente, The differential Δx = 2H(xu Λ xv) with vanishing boundary values, Proc. A.M.S.50, (1975), pp. 113-137. Zbl0313.35030
  23. [23] H. Werner, Das problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann.133, (1957), pp. 303-319. Zbl0077.34901MR95335

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.