Hyperbolic operators with non Lipschitz coefficients

F. Colombini; N. Lerner

Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)

  • page 1-12

How to cite

top

Colombini, F., and Lerner, N.. "Hyperbolic operators with non Lipschitz coefficients." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-12. <http://eudml.org/doc/112082>.

@article{Colombini1993-1994,
author = {Colombini, F., Lerner, N.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Lipschitz continuity; log-Lipschitz continuity; well-posedness},
language = {eng},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Hyperbolic operators with non Lipschitz coefficients},
url = {http://eudml.org/doc/112082},
year = {1993-1994},
}

TY - JOUR
AU - Colombini, F.
AU - Lerner, N.
TI - Hyperbolic operators with non Lipschitz coefficients
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - eng
KW - Lipschitz continuity; log-Lipschitz continuity; well-posedness
UR - http://eudml.org/doc/112082
ER -

References

top
  1. [1] Bahouri H., J.-Y. Chemin: Equations de transport relatives à des champs de vecteurs non lipschitziens et mécanique des fluides, Preprint n. 1059 (1993), Ecole Polytechnique, France. Zbl0821.76012MR1288809
  2. [2] Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sc. Ec. Norm. Sup.14 (1981), pp. 209-246. Zbl0495.35024MR631751
  3. [3] Chemin J.-Y., N. Lerner: Flots de champs de vecteurs non lipschitziens et équations de Navier-Stokes, Preprint n. 1062 (1993), Ecole Polytechnique, France. Zbl0878.35089MR1354312
  4. [4] Colombini F., E. De Giorgi, S. Spagnolo: Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 6 (1979), pp. 511-559. Zbl0417.35049MR553796
  5. [5] Colombini F., E. Jannelli, S. Spagnolo: Non Uniqueness in hyperbolic Cauchy problems, Ann. of Math.126 (1987), pp. 495-524. Zbl0649.35051MR916717
  6. [6] Colombini F., S. Spagnolo: Hyperbolic Equations without solvability, Ann. Sc. Ec. Norm. Sup., 22 (1989), pp. 109-125. Zbl0702.35146MR985857
  7. [7] Jannelli E.: Regularly Hyperbolic Systems and Gevrey Classes, Ann. Mat. Pura e Appl., serie IV, 140 (1985), pp. 133-145. Zbl0583.35074MR807634
  8. [8] Nishitani T.: Bull. Sc. Math. serie II, 107 (1983), pp. 113-138. Zbl0536.35042MR704720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.