Plongement isométrique de la sphère à courbure non négative dans R 3

C. Zuily

Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)

  • page 1-9

How to cite

top

Zuily, C.. "Plongement isométrique de la sphère à courbure non négative dans $R^3$." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-9. <http://eudml.org/doc/112093>.

@article{Zuily1993-1994,
author = {Zuily, C.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Weyl problem; nonnegative Gauss curvature; Monge-Ampère equation},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Plongement isométrique de la sphère à courbure non négative dans $R^3$},
url = {http://eudml.org/doc/112093},
year = {1993-1994},
}

TY - JOUR
AU - Zuily, C.
TI - Plongement isométrique de la sphère à courbure non négative dans $R^3$
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
KW - Weyl problem; nonnegative Gauss curvature; Monge-Ampère equation
UR - http://eudml.org/doc/112093
ER -

References

top
  1. [A] A.D. Alexandroff: Inirinsic geometry of convex surfaces, OGIZMoscow, 1948. 
  2. [CY] S.S. Cheng, S.T. Yau: On the regularity of the n-dimensional Minkowski problem, Comm. Pure Appl. Math.29 (1976), 495-516. Zbl0363.53030MR423267
  3. [GL] P. Guan, Y.Y. Li: On Weyl problem with non negative Gauss curvature. (preprint). 
  4. [GW] R.E. Greene, H. Wu: C∞ convex functions and manifolds of positive curvature, Acta Math.137 (1976), 209-245. Zbl0372.53019
  5. [He1] E. Heinz: Neue a-priori-Abschätzungen..., Math. Zeitsch.74 (1960), 129-157. Zbl0096.36601MR116294
  6. [He2] E. Heinz: On Weyl's embedding problem, J. Math. Mech., 11 (1962), 421-454. Zbl0119.16604MR139127
  7. [Ho] J. Hong: Dirichlet problems for general Monge-Ampère equations, Math. Zeitsch.209 (1992), 289-308. Zbl0771.35020MR1147819
  8. [I] J. Iaia: Isometric embeddings of surfaces with non negative curvature in R3, Duke Math. Journ. 67 (2), (1992), 423-459. Zbl0777.53006MR1177314
  9. [N] L. Nirenberg: The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math.6 (1953), 337-394. Zbl0051.12402MR58265
  10. [P] A.V. Pogorelov: Extrinsic geometry of convex surfaces, Transl. Math. Monogr., Vol 35, Providence, RI: Am. Math. Soc.1973. Zbl0311.53067MR346714
  11. [S] R. Sacksteder: The rigidity of hypersurfaces, J. Math. Mech.11 (1962), 929-939. Zbl0108.34702MR144286
  12. [Sa] Sabitov: Regularity of convex surfaces with a metric that is regular in Hölder classes. Sib. Mat. J., 17 (1977), 681-687. Zbl0386.53041
  13. [W] H. Weyl: Über die Bestimmung einer geschlossen convex..., Vierteljahrschrift Naturforsch. Gesell, (Zürich), 61 (1916), 40-72. JFM46.1115.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.