Surfaces de Willmore et groupes de lacets

F. Helein

Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995)

  • page 1-14

How to cite

top

Helein, F.. "Surfaces de Willmore et groupes de lacets." Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995): 1-14. <http://eudml.org/doc/112109>.

@article{Helein1994-1995,
author = {Helein, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Willmore surfaces; conformal Gauß maps; integrable system methods; loop groups},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Surfaces de Willmore et groupes de lacets},
url = {http://eudml.org/doc/112109},
year = {1994-1995},
}

TY - JOUR
AU - Helein, F.
TI - Surfaces de Willmore et groupes de lacets
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1994-1995
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
KW - Willmore surfaces; conformal Gauß maps; integrable system methods; loop groups
UR - http://eudml.org/doc/112109
ER -

References

top
  1. [Bättig-Hélein] D. Bättig, F. Hélein, Willmore immersion and Loop groups, en préparation. Zbl0938.53033
  2. [Blaschke] W. Blaschke, Vorlesungen über Differentialgeometrie, III, Springer, Berlin1929, JFM55.0422.01
  3. [Bryant 1] R. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom.20 (1984), 23-53. Zbl0555.53002MR772125
  4. [Bryant 2] R. Bryant, Surfaces in Conformal Geometry, Amer. Math. Soc. Proc. Symp. Pure Maths.48 (1988), 227-40. Zbl0654.53010MR974338
  5. [Burstall-Ferus-Pedit-Pinkall] F. Burstall, D. Ferus, F. Pedit, U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math.138 (1993), 173-212. Zbl0796.53063MR1230929
  6. [Dorfmeister-Pedit-Wu] J. Dorfmeister, F. Pedit, H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Ann. of Math. Zbl0932.58018
  7. [Li-Yau] P. Li, S.T. Yau, A new conformal invariant and its application to the Willmore conjecture and first eigenvalues of compact surfaces, Invent. Math.69 (1982), 269-91. Zbl0503.53042MR674407
  8. [Pressley-Segal] A.N. Pressley, G. Segal, Loop groups, Oxford Math. Monographs, Clarendon Press, Oxford1986. Zbl0618.22011MR900587
  9. [Simon] L. Simon, Existence of surfaces minimizing the Willmore functional, prépublication. Zbl0848.58012
  10. [Uhlenbeck] K. Uhlenbeck, Harmonic maps into Lie groups, J. Diff. Geom.30 (1989), 1-50. Zbl0677.58020MR1001271
  11. [White] J.H. White, A global invariant of conformal mapings in space, Proc. Amer. Math. Soc.38 (1973), 162-4. Zbl0256.53008MR324603
  12. [Willmore] T.J. Willmore, Riemannian Geometry, Oxford Science Publications, Oxford1993. Zbl0797.53002MR1261641

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.