Le problème de Cauchy dans des espaces locaux pour l'équation de Ginzburg-Landau complexe

J. Ginibre; G. Velo

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-18

How to cite

top

Ginibre, J., and Velo, G.. "Le problème de Cauchy dans des espaces locaux pour l'équation de Ginzburg-Landau complexe." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-18. <http://eudml.org/doc/112123>.

@article{Ginibre1995-1996,
author = {Ginibre, J., Velo, G.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Ginzburg-Landau equation; nonlinear Schrödinger equation; Cauchy problem},
language = {fre},
pages = {1-18},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Le problème de Cauchy dans des espaces locaux pour l'équation de Ginzburg-Landau complexe},
url = {http://eudml.org/doc/112123},
year = {1995-1996},
}

TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - Le problème de Cauchy dans des espaces locaux pour l'équation de Ginzburg-Landau complexe
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 18
LA - fre
KW - Ginzburg-Landau equation; nonlinear Schrödinger equation; Cauchy problem
UR - http://eudml.org/doc/112123
ER -

References

top
  1. [C] P. Collet: Thermodynamic limit of the Ginzburg-Landau equation, Nonlinearity, 7 (1994), 1175-1190. Zbl0803.35066MR1284687
  2. [CH] M.C. Cross, P.C. Hohenberg: Pattern formation outside of equilibrium, Rev. Mod. Phys.65 (1993), 851-1089. 
  3. [DGL] C.R. Doering, J.D. Gibbon, C.D. Levermore: Weak and strong solutions of the complex Ginzburg-Landau equation, PhysicaD71 (1994), 285-318. Zbl0810.35119MR1264120
  4. [GH] J.M. Ghidaglia, B. Héron: Dimension of the attactors associated to the Ginzburg Landau partial differential equation, PhysicaD28 (1987), 282-304. Zbl0623.58049MR914451
  5. [G] Y. Giga: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq.61 (1986), 186-212. Zbl0577.35058MR833416
  6. [GV1] J. Ginibre, G. Velo: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, I Compactness methods, PhysicaD, sous presse. Zbl0889.35045
  7. [GV2] J. Ginibre, G. Velo: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, II Contraction methods, prétirage LPTHE 96/03, Orsay. Zbl0889.35046
  8. [GV3] J. Ginibre, G. Velo: Localized estimates and Cauchy problem for the logarithmic complex Ginzburg-Landau equation, prétirage LPTHE 96/31, Orsay. Zbl0877.35116
  9. [LO] C.D. Levermore, M. Oliver: The complex Ginzburg-Landau equation as a model problem, in Dynamical Systems and probabilistic methods for nonlinear waves, Lect. Appl. Mat., AMS 31 (1996), 141-189. Zbl0845.35003MR1363028
  10. [MS] A. Mielke, G. Schneider: Attractors for modulation equations on unbounded domains, existence and comparison, Nonlinearity8 (1995), 743-768. Zbl0833.35016MR1355041
  11. [S] S. Snoussi: Etude du comportement asymptotique des solutions d'une équation de Ginzburg-Landau généralisée, Thèse, Orsay (1996). 
  12. [W1] F.B. Weissler: Local existence and non existence for semilinear parabolic equations in Lp, Ind. Univ. Math. J.29 (1980), 79-102. Zbl0443.35034MR554819
  13. [W2] F.B. Weissler: Existence and non existence of global solutions for a semilinear heat equation, Israel J. Math.38 (1981), 29-40. Zbl0476.35043MR599472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.