Théorie de la diffusion pour les opérateurs analytiquement décomposables

F. Nier

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-13

How to cite


Nier, F.. "Théorie de la diffusion pour les opérateurs analytiquement décomposables." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-13. <>.

author = {Nier, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Théorie de la diffusion pour les opérateurs analytiquement décomposables},
url = {},
year = {1995-1996},

AU - Nier, F.
TI - Théorie de la diffusion pour les opérateurs analytiquement décomposables
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - fre
UR -
ER -


  1. [1] F. Bentosela.Scattering for Impurities in a Crystal. Comm. Math. Phys., 46:153-166,1976. MR393883
  2. [2] J.M. Delort.F.B.I. Transformation. Number 1522 in Lect. Notes in Math. Springer-Verlag, 1992. Zbl0760.35004MR1186645
  3. [3] H. Hironaka.Stratification and Flatness. In P. Holm, editor, Real and Complex singularities, pages 199-265. Proceedings of the nordic summer school/NAVF, Sijthoff and Noordhoff, august 1976. Zbl0424.32004MR499286
  4. [4] L. Hörmander.The Analysis of Linear Partial Differential Operators, volume 3. Springer Verlag, 1985. Zbl0601.35001
  5. [5] C. Gérard, I. Laba.Scattering Theory for 3-Particle Systems in a Constant Magnetic Field: Dispersive Case. Technical report, Ecole Polytechnique, F-91128 Palaiseau, France, septembre 1995. Zbl0842.35069
  6. [6] J.M. Bony, N. Lerner.Quantification asymptotique et microlocalisation d'ordre supérieur I. Ann. Scient. Ec. Norm. Sup., 4e série, 22:377-433,1989. Zbl0753.35005MR1011988
  7. [7] E. Bierstone, P.D. Milman.Semi-Analytic and Subanalytic Sets. Inst. Htes Etudes Scient. Publ. Math., 67:5-42,1988. Zbl0674.32002MR1101830
  8. [8] E. Mourre.Absence of Singular Continuous Spectrum for Certain Self-Adjoint Operators. Commun. Math. Phys., 78:391-408,1981. Zbl0489.47010MR603501
  9. [9] C. Gérard, F. Nier.Théorie de la diffusion pour des opérateurs analytiquement décomposables. Technical report, CMAT, URA-CNRS 169, Ecole Polytechnique, F-91128 Palaiseau, 1996. 
  10. [10] P. Perry, I.M. Sigal, B. Simon.Spectral Analysis of N-body Schrödinger operators. Ann. Math., 519-567, 1981. Zbl0477.35069MR634428
  11. [11] M.M. Skriganov.Geometric and Arithmetric Methods in the Spectral Theory of MultiDimensional Periodic Operators. Proceedings of the Steklov Institute of Mathematics, 2, 1987. Zbl0615.47004MR905202
  12. [12] I.M. Sigal, A. Soffer.Local Decay an Velocity Bounds. Technical report. Princeton University, 1988. 
  13. [13] L.E. Thomas.Time-Dependent Approach to Scattering from Impurities in a Crystal. Comm. Math. Phys., 33:335-343, 1973. MR334766
  14. [14] M.S. Birman, D.R. Yafaev.Scattering Matrix for a Perturbation of a Periodic Schrödinger Operator by a Decaying Potential. Technical Report 100, Erwin Schrödinger Institute for Mathematical Physics, Vienne, Autriche, mai 1994. Zbl0860.35088

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.