Lamination duale à un arbre réel
- [1] LATP - UMR 6632 Université Aix-Marseille 3 Avenue de l’escadrille Normandie-Niémen 13397 Marseille Cedex 20 (France)
Séminaire de théorie spectrale et géométrie (2005-2006)
- Volume: 24, page 9-21
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topHilion, Arnaud. "Lamination duale à un arbre réel." Séminaire de théorie spectrale et géométrie 24 (2005-2006): 9-21. <http://eudml.org/doc/11217>.
@article{Hilion2005-2006,
abstract = {Nous présentons des résultats reliant un arbre réel muni d’une action par isométries du groupe libre, sa lamination duale et les courants portés par cette dernière.},
affiliation = {LATP - UMR 6632 Université Aix-Marseille 3 Avenue de l’escadrille Normandie-Niémen 13397 Marseille Cedex 20 (France)},
author = {Hilion, Arnaud},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {9-21},
publisher = {Institut Fourier},
title = {Lamination duale à un arbre réel},
url = {http://eudml.org/doc/11217},
volume = {24},
year = {2005-2006},
}
TY - JOUR
AU - Hilion, Arnaud
TI - Lamination duale à un arbre réel
JO - Séminaire de théorie spectrale et géométrie
PY - 2005-2006
PB - Institut Fourier
VL - 24
SP - 9
EP - 21
AB - Nous présentons des résultats reliant un arbre réel muni d’une action par isométries du groupe libre, sa lamination duale et les courants portés par cette dernière.
LA - fre
UR - http://eudml.org/doc/11217
ER -
References
top- M. Bestvina, -trees in topology, geometry, and group theory, Handbook of geometric topology (2002), 55-91, North-Holland, Amsterdam Zbl0998.57003MR1886668
- A. Casson, S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9 (1988), Cambridge University Press, Cambridge Zbl0649.57008MR964685
- M. Cohen, M. Lustig, Very small group actions on -trees and Dehn twist automorphisms, Topology 34 (1995), 575-617 Zbl0844.20018MR1341810
- T. Coulbois, A. Hilion, G. Levitt, M. Lustig
- T. Coulbois, A. Hilion, M. Lustig, -trees and laminations for free groups III : Currents and dual -tree metrics, (2005) Zbl1200.20018
- T. Coulbois, A. Hilion, M. Lustig, Non uniquely ergodic R-trees are topologically determined by their algebraic lamination, (2005)
- T. Coulbois, A. Hilion, M. Lustig, -trees and laminations for free groups I : Algebraic laminations, (2006) Zbl1197.20019
- T. Coulbois, A. Hilion, M. Lustig, -trees and laminations for free groups II : The dual lamination of an -tree, (2007) Zbl1198.20023
- Travaux de Thurston sur les surfaces, 66-67 (1976), FathiA.A., Paris Zbl0406.00016
- I. Kapovich, Currents on free groups, (2005) Zbl1110.20034MR2216713
- I. Kapovich, M. Lustig, The actions of on the boundary of Outer space and on the space of currents : minimal sets and equivariant incompatibility, (2006) Zbl1127.20025
- Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl0958.57001MR1792613
- H. Keynes, D. Newton, A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z. 148 (1976), 101-105 Zbl0308.28014
- G. Levitt, M. Lustig, Irreducible automorphisms of have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), 59-72 Zbl1034.20038MR1955207
- M. Lustig, -trees - currents - laminations : a delicate relationship, (2007)
- P. Shalen, Dendrology of groups : an introduction, Essays in group theory 8 (1987), 265-319, Springer, New York Zbl0649.20033MR919830
- W. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem , Trans. Amer. Math. Soc. 140 (1969), 1-33 Zbl0201.05601MR240056
- K. Vogtmann, Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000) 94 (2002), 1-31 Zbl1017.20035MR1950871
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.