Sur les variétés tridimensionnelles ayant le type d’homotopie de la sphère S 3

Valentin Poenaru

Séminaire Ehresmann. Topologie et géométrie différentielle (1964)

  • Volume: 6, page 1-67

How to cite

top

Poenaru, Valentin. "Sur les variétés tridimensionnelles ayant le type d’homotopie de la sphère $S_3$." Séminaire Ehresmann. Topologie et géométrie différentielle 6 (1964): 1-67. <http://eudml.org/doc/112193>.

@article{Poenaru1964,
author = {Poenaru, Valentin},
journal = {Séminaire Ehresmann. Topologie et géométrie différentielle},
keywords = {topology},
language = {fre},
pages = {1-67},
publisher = {Secrétariat mathématique},
title = {Sur les variétés tridimensionnelles ayant le type d’homotopie de la sphère $S_3$},
url = {http://eudml.org/doc/112193},
volume = {6},
year = {1964},
}

TY - JOUR
AU - Poenaru, Valentin
TI - Sur les variétés tridimensionnelles ayant le type d’homotopie de la sphère $S_3$
JO - Séminaire Ehresmann. Topologie et géométrie différentielle
PY - 1964
PB - Secrétariat mathématique
VL - 6
SP - 1
EP - 67
LA - fre
KW - topology
UR - http://eudml.org/doc/112193
ER -

References

top
  1. [1] R.H. Bing. An alternative proof that 3 - manifolds can be triangulated. Ann. of Math.69 (1959) pp. 37 - 65. Zbl0106.16604MR100841
  2. [2] A. Douady. Arrondissement des arêtes. Séminaire H. Cartan1961/62. Zbl0116.40306MR160223
  3. [3] M. Hirsch. Immersions of manifolds. Trans. Am. Math. Soc.93 (1959) pp. 242 - 276. Zbl0113.17202MR119214
  4. [4] M. Hirsch. On embedding differentiable manifolds in euclidean space. Ann. of Math73 (1961) pp. 613-623. Zbl0123.16701MR124915
  5. [5] B. Mazur. On embedding of spheres. Bull. Am. Math. Soc.65 (1959) pp. 59-65. Zbl0086.37004MR117693
  6. [6] B. Mazur. Stable equivalence in defferentiable topology. Bull. Am. Math. Soc.67 (1961) pp. 377 - 384. Zbl0107.17002MR130697
  7. [6'] B. Mazur. Simple neighborhoods. Bull. Am. Math. Soc.68 (1962) pp. 87 - 92. Zbl0105.17002MR137125
  8. [7] B. Mazur. A note on some contractible 4 - manifolds. Ann. of Math.73 (1961) pp. 221 - 228. Zbl0127.13604MR125574
  9. [8] B. Mazur. The theory of neighborhoods. (à paraître). Zbl0112.38301
  10. [9] J. Milnor. Differentiable manifolds which are homotopy spheres. (1958) (miméographié). 
  11. [10] E.E. Moise. Affine structures in 3 - manifolds. V. Ann. of Math. t 56 (1952) pp. 96 - 114. Zbl0048.17102MR48805
  12. [11] C.D. Papakyryakopoulos. Some problems on 3-dimensional manifolds. Bull of Amer. Math. Soc. t. 64 (1958) pp. 317 - 335. Zbl0088.39502MR102814
  13. [12] C.D. Papakyryakopoulos. On Dehn's lemma and the asphericity of knots.Ann. of Math. t. 66 (1957) pp. 1 - 26. Zbl0078.16401
  14. [13] V. Poenaru. Les décompositions de l'hypercube en produit topologique. Bull. Soc. Math. France t.88 (1960) pp. 113 - 129. Zbl0135.41704MR125572
  15. [14] V. Poenaru. Sur quelques propriétés des variétés simplement connexes à 3 dimensions. Rendiconti di Matematica. (1- 2) Vol. 20 (1961) pp. 235 - 269. Zbl0135.41703MR169226
  16. [15] V. Poenaru. Sur la théorie des immersions. (à paraître). Zbl0105.17202
  17. [16] V. Poenaru. Produits de variétés différentiables par un disque. (à paraître). Zbl0151.32906
  18. [17] H. Poincare. V-ième Complément à l'Analysis Situs. Rendiconti di Palermo tXVIII (1904) pp. 45-110. Zbl35.0504.13JFM35.0504.13
  19. [18] G. De Rham. Factorisation topologique du disque à 5 dimensions. Séminaire Ehresmann1961. Zbl0151.33001
  20. [19] S. Smale. The classification of immersions of spheres in Euclidean spaces. Ann. of Math.69 (1959) pp. 327 - 344. Zbl0089.18201MR105117
  21. [20] S. Smale. The generalized Poincaré Conjecture in higher dimensions. Bull. Amer. Math. Soc. Vol. 66 (1960) pp. 373 - 375. Zbl0099.39201MR124912
  22. [21] S. Smale. On gradient dynamical systems. Ann. of Math.74 (1961) pp. 199-206. Zbl0136.43702MR133139
  23. [22] S. Smale. Generalized Poincaré Conjecture in dimensions greater than four. Ann. of Math.74 (1961) pp. 391 - 406. Zbl0099.39202MR137124
  24. [23] S. Smale. On the structure of manifolds. (à paraître). Zbl0109.41103
  25. [24] J. Stallings. Polyhedral homotopy-spheres. Bull. Amer. Math. Soc.66 (1960) pp. 485-488. Zbl0111.18901MR124905
  26. [25] J. Stallings. The topology of piece-wise linear, high-dimensional manifolds. (à paraître). 
  27. [26] R. Thom. La classification des immersions. Séminaire Bourbaki1957. Zbl0116.40504MR105693
  28. [27] A.H. Wallace. Modification and cobounding manifolds. II. I. Math. Mech.10 (1961) pp. 773- 809. Zbl0108.36101MR130695
  29. [28] J.H.C. Whitehead. Simplicial spaces, Nuclei and m-Groups. Proc. Lond Math. Soc.45 (1939) pp. 243 - 327. Zbl0022.40702JFM65.1443.01
  30. [29] J.H.C. Whitehead. Simple homotopy types. Amer. J. of Math.LXXII (1950) pp. 1-57. Zbl0040.38901MR35437
  31. [30] J.H.C. Whitehead. Simple homotopy types. (Oxford, miméographié). Zbl0040.38901
  32. [31] J.H.C. Whitehead. Manifolds with transverse fields in euclidean space. Ann. of Math.73 (1961) 154-212. Zbl0096.37802MR124917
  33. [32] J.H.C. Whitehead. The immersion of an open 3 - manifold in Euclidean 3 - space (Proc. Lond. Math. Soc). Zbl0105.17203
  34. [33] E.C. Zeemann. The generalized Poincaré Conjecture. Bull. Amer. Math. Soc.67 (1961) pp. 270. Zbl0121.40005
  35. [34] E.C. Zeemann. The Poincaré Conjecture for n &gt; 5. Dans le volume « Topology of 3-manifolds » Georgia1962. pp. 198 - 204. MR140113
  36. [35] J.H.C. Whitehead. On C1 Complexes. Ann. of Math.1941. Zbl0025.09203MR2545JFM66.0955.03
  37. [36] V. Poenaru. Le théorème de grossissement (à paraître). 
  38. [37] V. Poenaru. Le théorème de régularisation (à paraître). 
  39. [38] V. Poenaru. Homotopie réguliè re et isotopie I, II (à paraître). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.