Isotropic curvature: A survey

Harish Seshadri[1]

  • [1] Indian Institute of Science Department of mathematics Bangalore 560012 (India)

Séminaire de théorie spectrale et géométrie (2007-2008)

  • Volume: 26, page 139-144
  • ISSN: 1624-5458

Abstract

top
We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.

How to cite

top

Seshadri, Harish. "Isotropic curvature: A survey." Séminaire de théorie spectrale et géométrie 26 (2007-2008): 139-144. <http://eudml.org/doc/11234>.

@article{Seshadri2007-2008,
abstract = {We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.},
affiliation = {Indian Institute of Science Department of mathematics Bangalore 560012 (India)},
author = {Seshadri, Harish},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Weyl Curvature; Euler Characteristic; Chern-Gauss-Bonnet Theorem; Asymptotically Flat Manifolds; Yamabe metric; Weyl curvature; Euler characteristic; Chern-Gauss-Bonnet theorem; asymptotically flat manifolds},
language = {eng},
pages = {139-144},
publisher = {Institut Fourier},
title = {Isotropic curvature: A survey},
url = {http://eudml.org/doc/11234},
volume = {26},
year = {2007-2008},
}

TY - JOUR
AU - Seshadri, Harish
TI - Isotropic curvature: A survey
JO - Séminaire de théorie spectrale et géométrie
PY - 2007-2008
PB - Institut Fourier
VL - 26
SP - 139
EP - 144
AB - We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.
LA - eng
KW - Weyl Curvature; Euler Characteristic; Chern-Gauss-Bonnet Theorem; Asymptotically Flat Manifolds; Yamabe metric; Weyl curvature; Euler characteristic; Chern-Gauss-Bonnet theorem; asymptotically flat manifolds
UR - http://eudml.org/doc/11234
ER -

References

top
  1. S. Brendle Einstein manifolds with nonnegative isotropic curvature are locally symmetric, arXiv:0812.0335 Zbl1189.53042
  2. S. Brendle, R. Schoen, Manifolds with 1/4-pinched Curvature are Space Forms, To appear in the Journal of American Mathematical Society. Zbl1251.53021MR2449060
  3. S. Brendle, R. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures, Acta Mathematica 200 (2008), 1-13. Zbl1157.53020MR2386107
  4. A. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345-354. Zbl1044.53023MR1999925
  5. A. Fraser, The fundamental group of manifolds of positive isotropic curvature and surface groups, Duke Math. J. 133 (2006), no. 2, 325-334. Zbl1110.53027MR2225695
  6. S. Gadgil, H. Seshadri On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009), 1807-1811. Zbl1166.53026MR2470841
  7. M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), 1-295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 Zbl0841.20039MR1253544
  8. R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. Zbl0892.53018MR1456308
  9. M. Micallef, J. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199-227. Zbl0661.53027MR924677
  10. M. Micallef, M. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649-672. Zbl0804.53058MR1253619
  11. R. Schoen, http://www.math.washington.edu/~lee/PNGS/2007-fall/schoen-problems.pdf 
  12. W. Seaman, On manifolds with nonnegative curvature on totally isotropic 2-planes, Trans. Amer. Math. Soc. 338 (1993), no. 2, 843-855. Zbl0785.53034MR1123458
  13. H. Seshadri, A note on negative isotropic curvature, Math. Res. Lett. 11 (2004), no. 2-3, 365-370. Zbl1073.53050MR2067480
  14. H. Seshadri, Manifolds with nonnegative isotropic curvature, http://www.math.iisc.ernet.in/~harish/papers/pic-cag.pdf Zbl1197.53047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.