Isotropic curvature: A survey
- [1] Indian Institute of Science Department of mathematics Bangalore 560012 (India)
Séminaire de théorie spectrale et géométrie (2007-2008)
- Volume: 26, page 139-144
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topSeshadri, Harish. "Isotropic curvature: A survey." Séminaire de théorie spectrale et géométrie 26 (2007-2008): 139-144. <http://eudml.org/doc/11234>.
@article{Seshadri2007-2008,
	abstract = {We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.},
	affiliation = {Indian Institute of Science Department of mathematics Bangalore 560012 (India)},
	author = {Seshadri, Harish},
	journal = {Séminaire de théorie spectrale et géométrie},
	keywords = {Weyl Curvature; Euler Characteristic; Chern-Gauss-Bonnet Theorem; Asymptotically Flat Manifolds; Yamabe metric; Weyl curvature; Euler characteristic; Chern-Gauss-Bonnet theorem; asymptotically flat manifolds},
	language = {eng},
	pages = {139-144},
	publisher = {Institut Fourier},
	title = {Isotropic curvature: A survey},
	url = {http://eudml.org/doc/11234},
	volume = {26},
	year = {2007-2008},
}
TY  - JOUR
AU  - Seshadri, Harish
TI  - Isotropic curvature: A survey
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2007-2008
PB  - Institut Fourier
VL  - 26
SP  - 139
EP  - 144
AB  - We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.
LA  - eng
KW  - Weyl Curvature; Euler Characteristic; Chern-Gauss-Bonnet Theorem; Asymptotically Flat Manifolds; Yamabe metric; Weyl curvature; Euler characteristic; Chern-Gauss-Bonnet theorem; asymptotically flat manifolds
UR  - http://eudml.org/doc/11234
ER  - 
References
top- S. Brendle Einstein manifolds with nonnegative isotropic curvature are locally symmetric, arXiv:0812.0335 Zbl1189.53042
- S. Brendle, R. Schoen, Manifolds with 1/4-pinched Curvature are Space Forms, To appear in the Journal of American Mathematical Society. Zbl1251.53021MR2449060
- S. Brendle, R. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures, Acta Mathematica 200 (2008), 1-13. Zbl1157.53020MR2386107
- A. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345-354. Zbl1044.53023MR1999925
- A. Fraser, The fundamental group of manifolds of positive isotropic curvature and surface groups, Duke Math. J. 133 (2006), no. 2, 325-334. Zbl1110.53027MR2225695
- S. Gadgil, H. Seshadri On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009), 1807-1811. Zbl1166.53026MR2470841
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), 1-295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 Zbl0841.20039MR1253544
- R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. Zbl0892.53018MR1456308
- M. Micallef, J. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199-227. Zbl0661.53027MR924677
- M. Micallef, M. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649-672. Zbl0804.53058MR1253619
- R. Schoen, http://www.math.washington.edu/~lee/PNGS/2007-fall/schoen-problems.pdf
- W. Seaman, On manifolds with nonnegative curvature on totally isotropic 2-planes, Trans. Amer. Math. Soc. 338 (1993), no. 2, 843-855. Zbl0785.53034MR1123458
- H. Seshadri, A note on negative isotropic curvature, Math. Res. Lett. 11 (2004), no. 2-3, 365-370. Zbl1073.53050MR2067480
- H. Seshadri, Manifolds with nonnegative isotropic curvature, http://www.math.iisc.ernet.in/~harish/papers/pic-cag.pdf Zbl1197.53047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 