Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature
- [1] Université Pierre et Marie Curie (Paris VI) Laboratoire Jacques-Louis Lions (UMR CNRS 7598) 4 place Jussieu 75252 Paris (France)
Séminaire de théorie spectrale et géométrie (2007-2008)
- Volume: 26, page 77-90
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topLeFloch, Philippe G.. "Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature." Séminaire de théorie spectrale et géométrie 26 (2007-2008): 77-90. <http://eudml.org/doc/11240>.
@article{LeFloch2007-2008,
abstract = {We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.},
affiliation = {Université Pierre et Marie Curie (Paris VI) Laboratoire Jacques-Louis Lions (UMR CNRS 7598) 4 place Jussieu 75252 Paris (France)},
author = {LeFloch, Philippe G.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Lorentzian geometry; injectivity radius; constant mean curvature foliation; harmonic coordinates},
language = {eng},
pages = {77-90},
publisher = {Institut Fourier},
title = {Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature},
url = {http://eudml.org/doc/11240},
volume = {26},
year = {2007-2008},
}
TY - JOUR
AU - LeFloch, Philippe G.
TI - Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature
JO - Séminaire de théorie spectrale et géométrie
PY - 2007-2008
PB - Institut Fourier
VL - 26
SP - 77
EP - 90
AB - We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.
LA - eng
KW - Lorentzian geometry; injectivity radius; constant mean curvature foliation; harmonic coordinates
UR - http://eudml.org/doc/11240
ER -
References
top- M.T. Anderson, Convergence and rigidity of metrics under Ricci curvature bounds, Invent. Math. 102 (1990), 429–445. Zbl0711.53038MR1074481
- M.T. Anderson, Regularity for Lorentz metrics under curvature bounds, Jour. Math. Phys. 44 (2003), 2994–3012. Zbl1062.53058MR1982778
- L. Andersson and V. Moncrief, Elliptic-hyperbolic systems and the Einstein equations, Ann. Inst. Henri Poincaré 4 (2003), 1–34. Zbl1028.83005MR1967177
- L. Andersson and V. Moncrief, Future complete vacuum spacetimes, in “The Einstein equations and the large scale behavior of gravitational fields”, Birkhäuser, Basel, 2004, pp. 299–330. Zbl1105.83001MR2098919
- R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982), 131–152. Zbl0512.53055MR680653
- A. Besse,Einstein manifolds, Ergebenisse Math. Series 3, Springer Verlag, 1987. Zbl0613.53001MR867684
- J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15–53. Zbl0493.53035MR658471
- B.-L. Chen and P.G. LeFloch, Injectivity radius estimates for Lorentzian manifolds, Commun. Math. Phys. 278 (2008), 679–713. Zbl1156.53040MR2373440
- B.-L. Chen and P.G. LeFloch, Local foliations and optimal regularity of Einstein spacetimes, submitted. Zbl1179.53069
- D.M. DeTurck and J.L. Kazdan, Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. 14 (1981), 249–260. Zbl0486.53014MR644518
- C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983), 523–533. Zbl0519.53056MR713684
- S. Hawking and G.F. Ellis,The large scale structure of space-time, Cambridge Univ. Press, 1973. Zbl0265.53054MR424186
- J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), 27–77. Zbl0502.53036MR679120
- S. Klainerman and I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc. 21 (2008), 775–795. Zbl1198.53057MR2393426
- S. Klainerman and I. Rodnianski, On the breakdown criterion in general relativity, preprint, 2008. Zbl1203.35084
- R. Penrose,Techniques of differential topology in relativity, CBMS-NSF Region. Conf. Series Appli. Math., Vol. 7, 1972. Zbl0321.53001MR469146
- P. Petersen, Convergence theorems in Riemannian geometry, in “Comparison Geometry” (Berkeley, CA, 1992–93), MSRI Publ. 30, Cambridge Univ. Press, 1997, pp. 167–202. Zbl0898.53035MR1452874
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.