Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature

Philippe G. LeFloch[1]

  • [1] Université Pierre et Marie Curie (Paris VI) Laboratoire Jacques-Louis Lions (UMR CNRS 7598) 4 place Jussieu 75252 Paris (France)

Séminaire de théorie spectrale et géométrie (2007-2008)

  • Volume: 26, page 77-90
  • ISSN: 1624-5458

Abstract

top
We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.

How to cite

top

LeFloch, Philippe G.. "Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature." Séminaire de théorie spectrale et géométrie 26 (2007-2008): 77-90. <http://eudml.org/doc/11240>.

@article{LeFloch2007-2008,
abstract = {We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.},
affiliation = {Université Pierre et Marie Curie (Paris VI) Laboratoire Jacques-Louis Lions (UMR CNRS 7598) 4 place Jussieu 75252 Paris (France)},
author = {LeFloch, Philippe G.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Lorentzian geometry; injectivity radius; constant mean curvature foliation; harmonic coordinates},
language = {eng},
pages = {77-90},
publisher = {Institut Fourier},
title = {Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature},
url = {http://eudml.org/doc/11240},
volume = {26},
year = {2007-2008},
}

TY - JOUR
AU - LeFloch, Philippe G.
TI - Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature
JO - Séminaire de théorie spectrale et géométrie
PY - 2007-2008
PB - Institut Fourier
VL - 26
SP - 77
EP - 90
AB - We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.
LA - eng
KW - Lorentzian geometry; injectivity radius; constant mean curvature foliation; harmonic coordinates
UR - http://eudml.org/doc/11240
ER -

References

top
  1. M.T. Anderson, Convergence and rigidity of metrics under Ricci curvature bounds, Invent. Math. 102 (1990), 429–445. Zbl0711.53038MR1074481
  2. M.T. Anderson, Regularity for Lorentz metrics under curvature bounds, Jour. Math. Phys. 44 (2003), 2994–3012. Zbl1062.53058MR1982778
  3. L. Andersson and V. Moncrief, Elliptic-hyperbolic systems and the Einstein equations, Ann. Inst. Henri Poincaré 4 (2003), 1–34. Zbl1028.83005MR1967177
  4. L. Andersson and V. Moncrief, Future complete vacuum spacetimes, in “The Einstein equations and the large scale behavior of gravitational fields”, Birkhäuser, Basel, 2004, pp. 299–330. Zbl1105.83001MR2098919
  5. R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982), 131–152. Zbl0512.53055MR680653
  6. A. Besse,Einstein manifolds, Ergebenisse Math. Series 3, Springer Verlag, 1987. Zbl0613.53001MR867684
  7. J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15–53. Zbl0493.53035MR658471
  8. B.-L. Chen and P.G. LeFloch, Injectivity radius estimates for Lorentzian manifolds, Commun. Math. Phys. 278 (2008), 679–713. Zbl1156.53040MR2373440
  9. B.-L. Chen and P.G. LeFloch, Local foliations and optimal regularity of Einstein spacetimes, submitted. Zbl1179.53069
  10. D.M. DeTurck and J.L. Kazdan, Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. 14 (1981), 249–260. Zbl0486.53014MR644518
  11. C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983), 523–533. Zbl0519.53056MR713684
  12. S. Hawking and G.F. Ellis,The large scale structure of space-time, Cambridge Univ. Press, 1973. Zbl0265.53054MR424186
  13. J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), 27–77. Zbl0502.53036MR679120
  14. S. Klainerman and I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc. 21 (2008), 775–795. Zbl1198.53057MR2393426
  15. S. Klainerman and I. Rodnianski, On the breakdown criterion in general relativity, preprint, 2008. Zbl1203.35084
  16. R. Penrose,Techniques of differential topology in relativity, CBMS-NSF Region. Conf. Series Appli. Math., Vol. 7, 1972. Zbl0321.53001MR469146
  17. P. Petersen, Convergence theorems in Riemannian geometry, in “Comparison Geometry” (Berkeley, CA, 1992–93), MSRI Publ. 30, Cambridge Univ. Press, 1997, pp. 167–202. Zbl0898.53035MR1452874

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.