Classification des variétés différentiables, ( n - 1 ) -connexes, sans torsion, de dimension 2 n + 1

Itiro Tamura

Séminaire Henri Cartan (1962-1963)

  • Volume: 15, page 1-27

How to cite

top

Tamura, Itiro. "Classification des variétés différentiables, $(n - 1)$-connexes, sans torsion, de dimension $2n + 1$." Séminaire Henri Cartan 15 (1962-1963): 1-27. <http://eudml.org/doc/112445>.

@article{Tamura1962-1963,
author = {Tamura, Itiro},
journal = {Séminaire Henri Cartan},
keywords = {topology},
language = {fre},
pages = {1-27},
publisher = {Secrétariat mathématique},
title = {Classification des variétés différentiables, $(n - 1)$-connexes, sans torsion, de dimension $2n + 1$},
url = {http://eudml.org/doc/112445},
volume = {15},
year = {1962-1963},
}

TY - JOUR
AU - Tamura, Itiro
TI - Classification des variétés différentiables, $(n - 1)$-connexes, sans torsion, de dimension $2n + 1$
JO - Séminaire Henri Cartan
PY - 1962-1963
PB - Secrétariat mathématique
VL - 15
SP - 1
EP - 27
LA - fre
KW - topology
UR - http://eudml.org/doc/112445
ER -

References

top
  1. [1] Atiyah ( M.F.) and Hirzebruch ( F.). - Riemann-Roch theorems for differentiable manifolds, Bull. Amer. math. Soc., t. 65, 1959, p. 276-281. Zbl0142.40901MR110106
  2. [2] Borel ( A.) and Hirzebruch ( F.). - Characteristic classes and homogeneous spaces, III., Amer. J. of Math., t. 82, 1960, p. 491-504. Zbl0097.36401MR120664
  3. [3] Cerf ( Jean). - Travaux de Smale sur la structure des variétés différentiables, Séminaire Cartan, t. 14, 1961/62 : Topologie différentielle, n° 16-18 (à paraître). 
  4. [4] Haefliger ( André). - Plongements différentiables de variétés dans variétés, Comment. Math. Helvet., t. 36, 1961, p. 47-82. Zbl0102.38603MR145538
  5. [5] Hirzebruch ( Friedrich). - Neue topologische Methoden in der algebraischen Geometrie. - Berlin, J. Springer, 1956 (Ergebnisse der Mathematik, Neue Folge, 9). Zbl0070.16302MR82174
  6. [6] Kervaire ( M.). - Some non-stable homotopy groups of Lie groups, Illinois J. of Math., t. 4, 1960, p. 161-169. Zbl0105.35302MR113237
  7. [7] Kervaire ( M.) and Milnor ( J.). - Groups of homotopy spheres, I. - New York, New York University, 1961 (multigraphié). 
  8. [8] Milnor ( J.). - Some consequences of a theorem of Bott, Annals of Math., t. 68, 1958, p. 444-449. Zbl0085.17301MR102805
  9. [9] Milnor ( J.). - Differentiable structures on spheres, Amer. J. of Math., t. 81, 1959, p. 962-972. Zbl0111.35501MR110107
  10. [10] Milnor ( J.). - Differentiable manifolds which are homotopy spheres. - Princeton, Princeton University Press, 1959 (multigraphié). Zbl0106.37001
  11. [11] Morin ( Bernard). - Sur les suites spectrales de Kervaire-Milnor, Séminaire Cartan, t. 14, 1961/62 : Topologie différentielle, 2e partie, n° 8-13 (à paraître). 
  12. [12] Morlet ( Claude). - Les homomorphismes des algèbres de cobordismes dans Q , Séminaire Cartan, t. 15, 1962/63 : Topologie différentielle, n° 1-4 (à paraître). 
  13. [13] Smale ( S.). - Generalized Poincaré's conjecture in dimensions greater than four, Annals of Math., t. 74, 1961, p. 391-406. Zbl0099.39202MR137124
  14. [14] Smale ( S.). - On the structure of 5-manifolds, Annals of Math., t. 75, 1962, p. 38-46. Zbl0101.16103MR141133
  15. [15] Smale ( S.). - On the structure of manifolds, Amer. J. of Math., t. 84, 1962, p. 387-399. Zbl0109.41103MR153022
  16. [16] Tamura ( I.). - On Pontrjagin classes and homotopy types of manifolds, J. Math. Soc. Japan, t. 9, 1957, p. 250-262. Zbl0173.51202MR91475
  17. [17] Thom ( René). - Les classes caractéristiques de Pontrjagin des variétés triangulées, Symposium internacional de topologia algebraica [1958. Mexico] ; p. 54-67. - Mexico, UNESCO, 1958. Zbl0088.39201MR102071
  18. [18] Wall ( C.T.C.). - Classification of (n - 1)-connected 2n-manifolds, Annals of Math., t. 74, 1962, p. 163-189. Zbl0218.57022MR145540
  19. [19] Whitehead ( J.H.C.) and James ( I.M.). - The homotopy theory of sphere bundles over spheres, Proc. London math. Soc., t. 4, 1954, p. 196-218. Zbl0056.16703MR61838
  20. [20] Whitney ( H.). - The self-intersections of a smooth n-manifold in 2n-space, Annals of Math., t. 45, 1944, p. 220-246. Zbl0063.08237MR10274

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.