Inégalités du type Harnack
Séminaire Schwartz (1959-1960)
- Volume: 4, page 1-7
Access Full Article
topHow to cite
topZerner, Martin. "Inégalités du type Harnack." Séminaire Schwartz 4 (1959-1960): 1-7. <http://eudml.org/doc/112780>.
@article{Zerner1959-1960,
author = {Zerner, Martin},
journal = {Séminaire Schwartz},
language = {fre},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {Inégalités du type Harnack},
url = {http://eudml.org/doc/112780},
volume = {4},
year = {1959-1960},
}
TY - JOUR
AU - Zerner, Martin
TI - Inégalités du type Harnack
JO - Séminaire Schwartz
PY - 1959-1960
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 7
LA - fre
UR - http://eudml.org/doc/112780
ER -
References
top- [1] Aronszajn ( N.). - A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. pures et appl., 9e série, t. 36, 1957, p. 235-249. Zbl0084.30402MR92067
- [2] Calabi ( Eugenio). - An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke math. J., t. 25, 1958, p. 45-56. Zbl0079.11801MR92069
- [3] Cordes ( Heinz Otto). - Über die eindeutige Bestimtheit den Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben , Nachra Akad. Wiss. Göttingen, t. 11, 1956, p. 239-258. Zbl0074.08002MR86237
- [4] Hopf ( H.). - Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung von elliptischen Typus, Sitz. preuss. Akad. Wiss., t. 19, 1927, p. 147-152. Zbl53.0454.02JFM53.0454.02
- [5] Landis ( E.M.). - O principe fragmena lindelëfa dlja rešenv elliptičeskikh uranenij, Doklady Akad. Nauk SSSR, t. 107, 1956, p. 508-511. Zbl0070.32401MR88638
- [6] Landis ( E.M.). - O nekotorykh svo j stvakh rešenij elliptićeskikh uranenij, Doklady Akad. Nauk SSSR, t. 107, 1956, p. 640-643. Zbl0075.28201MR78557
- [7] Landis ( E.M.). - Nekotorye voprosy kačestvennoj teorii elliptičeskikh i paraboličeskikh uravnenij, Uspekhi Mat. Nauk, N. S., t. 14, 1959, p. 21-85. Zbl0122.33701
- [8] Nirenberg ( L.). - A strong maximum principle for parabolic equations, J. of Math. pure and appl., t. 6, 1953, p. 167-177. Zbl0050.09601MR55544
- [9] Serrin ( James). - On the Harnack inequality for linear elliptic equations, J. Anal. math. Jérusalem, t. 4, 1954–1956, p. 292-308. Zbl0070.32302MR81415
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.