Noyaux d'une classe d'opérateurs pseudo-différentiels sur l'espace de Fock, et applications

Bernard Lascar

Séminaire Paul Krée (1976-1977)

  • Volume: 3, page 1-43

How to cite

top

Lascar, Bernard. "Noyaux d'une classe d'opérateurs pseudo-différentiels sur l'espace de Fock, et applications." Séminaire Paul Krée 3 (1976-1977): 1-43. <http://eudml.org/doc/112842>.

@article{Lascar1976-1977,
author = {Lascar, Bernard},
journal = {Séminaire Paul Krée},
language = {fre},
pages = {1-43},
publisher = {Secrétariat mathématique},
title = {Noyaux d'une classe d'opérateurs pseudo-différentiels sur l'espace de Fock, et applications},
url = {http://eudml.org/doc/112842},
volume = {3},
year = {1976-1977},
}

TY - JOUR
AU - Lascar, Bernard
TI - Noyaux d'une classe d'opérateurs pseudo-différentiels sur l'espace de Fock, et applications
JO - Séminaire Paul Krée
PY - 1976-1977
PB - Secrétariat mathématique
VL - 3
SP - 1
EP - 43
LA - fre
UR - http://eudml.org/doc/112842
ER -

References

top
  1. [1] Bargmann ( V.). - On a Hilbert space of analytic functions and an associated integral transform, II, Comm. pure and appl. Math., t. 20, 1967, p.1-101. Zbl0149.09601MR201959
  2. [2] Berezin ( F.A.). - Wick and anti-Wick operator symbols, Math. of USSR-Sbornik, t. 15, 1971, p. 577-606 ; et, [en russe] Mat. Sbornik, t. 86, 1971, p. 578-610. Zbl0247.47018MR291839
  3. [3] Bleher ( P.M.) and Višik ( M.I.). - On a class of pseudo differential operators with an infinite number of variables, and applications, Math. of USSR-Sbornik, t. 15, 1971, p. 443-491 ; et [en russe] Mat. Sbornik, t. 86, 1971, p. 446-494. Zbl0248.35109MR296770
  4. [4] Gross ( L.). - Potential theory on Hilbert space, J. funct. Analysis, t. 1, 1967, p. 123-181. Zbl0165.16403MR227747
  5. [5] Hörmander ( L.). - Fourier integral operators, I, Acta Math., Uppsala, t. 127, 1971, p. 79-183. Zbl0212.46601MR388463
  6. [6] Krée ( P.). - Triplets conucléaires en théorie des champs, Séminaire Paul Krée : Equations aux dérivées partielles en dimension infinie, 2e année, 1976/77, n° 4, 11 p. Zbl0385.46048
  7. [7] Krée ( P.) and Raczka ( R.). - Kernels of integral operators in quantum fields theory, Ann. Inst. Henri Poincaré (à paraître). 
  8. [8] Lascar ( B.). - Propriétés locales d'espaces de type Sobolev en dimension infinie, Comm. in partial diff. Equations, t. 1, 1976, p. 561-584. Zbl0358.46025MR415316
  9. [9] Lascar ( B.). - Une condition nécessaire et suffisante d' ellipticité pour une classe d'opérateurs différentiels en dimension infinie, Comm. in partial di diff. Equations, t. 2, 1977, p. 31-67. Zbl0377.58011MR632077
  10. [10] Lascar ( B.). - Opérateur pseudo-différentiels en dimension infinie, J. Analyse math., Jérusalem (à paraître). 
  11. [11] Schwartz ( L.). - Radon measures on arbitrary topological spaces and cylindrical measures. - Oxford, Oxford University Press1973 (Tata Institute of fundamental Research, Studies in Mathematics, 6). Zbl0298.28001MR426084
  12. [12] Stein ( E.M.). - Singular integrals and differentiability properties of functions. - Princeton, Princeton University Press, 1970 (Princetonmathematical Series, 30). Zbl0207.13501MR290095
  13. [13] Treves ( F.). - Topological vector spaces, distributions and kernels. - New York, Academic Press, 1967 (Pure and applied Mathematics, Academic Press, 25). Zbl0171.10402MR225131
  14. [14] Višik ( M.I.) and Marčenko ( A.V.). - Boundary value problems for second-order elliptic and parabolic operators on infinite-dimensional manifolds with boundary, Math. of USSR-Sbornik, t. 19, 1973, p. 325-364 ; et [en russe] Mat. Sbornik, t. 90, 1973, p. 331-371. Zbl0282.35037MR610099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.