Problèmes de Cauchy hyperboliques en dimension infinie
Séminaire Paul Krée (1977-1978)
- Volume: 4, page 1-29
Access Full Article
topHow to cite
topLascar, Bernard. "Problèmes de Cauchy hyperboliques en dimension infinie." Séminaire Paul Krée 4 (1977-1978): 1-29. <http://eudml.org/doc/112851>.
@article{Lascar1977-1978,
author = {Lascar, Bernard},
journal = {Séminaire Paul Krée},
keywords = {Cauchy problem; strictly hyperbolic differential operators; infinite- dimensional Hilbert space; Carleman estimate; a priori estimate; existence and uniqueness theorems; parametrix; Fourier integral operators},
language = {fre},
pages = {1-29},
publisher = {Secrétariat mathématique},
title = {Problèmes de Cauchy hyperboliques en dimension infinie},
url = {http://eudml.org/doc/112851},
volume = {4},
year = {1977-1978},
}
TY - JOUR
AU - Lascar, Bernard
TI - Problèmes de Cauchy hyperboliques en dimension infinie
JO - Séminaire Paul Krée
PY - 1977-1978
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 29
LA - fre
KW - Cauchy problem; strictly hyperbolic differential operators; infinite- dimensional Hilbert space; Carleman estimate; a priori estimate; existence and uniqueness theorems; parametrix; Fourier integral operators
UR - http://eudml.org/doc/112851
ER -
References
top- [1] Bargmann ( V.). - On a Hilbert space of analytic functions and an associated integral transform, II : A family of related function spaces application to distribution theory, Comm. on pure and applied Math., t. 20, 1967, p. 1-101. Zbl0149.09601MR201959
- [2] Berezin ( F.A.). - Wick and Anti-Wick operators symbols, [en Russe] Mat. Sbornik, t. 86(128), 1971, p. 578-610 ; [en Anglais] Math. USSR-Sbornik, t. 17, 1971, p. 577-606. Zbl0247.47018MR291839
- [3] Duistermatt ( J.J.). - Fourier integral operators. - New York, Courant Institute of mathematical Sciences, 1973. Zbl0272.47028MR451313
- [4] Duistermaat ( J.J.) and Hörmander ( L.). - Fourier intégral operators, II, Acta Math., Uppsala, t. 128, 1972, p. 183-269. Zbl0232.47055MR388464
- [5] Gross ( L.). - Potential theory on Hilbert space, J. of funct. Analysis, t. 1, 1967, p. 123-181. Zbl0165.16403MR227747
- [6] Hörmander ( L.). - Linear partial differential operators. - Berlin, Springer-Verlag, 1963 (Die Grundlehren der mathematischen Wissenschaften, 116). Zbl0108.09301MR161012
- [7] Hörmander ( L.). - Fourier integral operators, I, Acta Math., Uppsala, t. 127, 1971, p. 79-183. Zbl0212.46601MR388463
- [8] Krée ( P.). - Calcul d'intégrales et de dérivées en dimension infinie, J. of funct. Analysis, t. 31, 1979 (à paraître). Zbl0417.46048MR525949
- [9] Krée ( P.) and Raczka ( R.). - Kernels and symbols of operators in quantum field theory, Ann. Inst. H. Poincaré, Section A, t. 28, 1978, p. 41-73. Zbl0386.47015MR482179
- [10] Lascar ( B.). - Théorème de Cauchy-Kovalewsky et théorème d'unicité d'Holmgren pour des fonctions d'une infinité de variables, C. R. Acad. Sc. Paris, t. 282, 1976, Série A, p. 691-694. Zbl0333.35001MR410044
- [11] Lascar ( B.). - Propriétés locales d'espaces de Sobolev en dimension infinie., Comm. in partial diff. Equations, t. 1, 1976, p. 561-584. Zbl0358.46025MR415316
- [12] Lascar ( B.). - Une condition nécessaire et suffisante d'ellipticité en dimension infinie, Comm. in partial diff. Equations, t. 2, 1977, p. 31-57. Zbl0377.58011MR632077
- [13] Lascar ( B.). - Equations aux dérivées partielles en dimension infinie, Thèse Doctorat d'Etat, Université P. et M. Curie, 1978. Zbl0403.35099
- [14] Schwartz ( L.). - Radon measures on arbitrary topological spaces and cylindrical measures. - Bombay, Oxford University Press, 1973 (Tata Institute of fundamental Research. Studies in Mathematics, 6). Zbl0298.28001MR426084
- [15] Trèves ( F.). - Linear partial differential operators with constant coefficients. - New York, Gordon and Breach, 1966 (Mathematics and its Applications, 6). Zbl0164.40602MR224958
- [16] Trèves ( F.). - Topological vector spaces, distributions and kernels. - New York, Academic Press, 1967 (Pure and applied Mathematics. Academic Press, 25). Zbl0171.10402MR225131
- [17] Višik( M.I.) and Bleher ( P.). - Une classe d'opérateurs pseudo-différentiels d'une infinité de variables, [en Russe] Mat. Sbornik, t. 86(128), 1971, p. 446-494 ; [en Anglais] Math. USSR-Sbornik, t. 15, 1971, p. 443-491. Zbl0248.35109
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.