Problèmes de Cauchy hyperboliques en dimension infinie

Bernard Lascar

Séminaire Paul Krée (1977-1978)

  • Volume: 4, page 1-29

How to cite

top

Lascar, Bernard. "Problèmes de Cauchy hyperboliques en dimension infinie." Séminaire Paul Krée 4 (1977-1978): 1-29. <http://eudml.org/doc/112851>.

@article{Lascar1977-1978,
author = {Lascar, Bernard},
journal = {Séminaire Paul Krée},
keywords = {Cauchy problem; strictly hyperbolic differential operators; infinite- dimensional Hilbert space; Carleman estimate; a priori estimate; existence and uniqueness theorems; parametrix; Fourier integral operators},
language = {fre},
pages = {1-29},
publisher = {Secrétariat mathématique},
title = {Problèmes de Cauchy hyperboliques en dimension infinie},
url = {http://eudml.org/doc/112851},
volume = {4},
year = {1977-1978},
}

TY - JOUR
AU - Lascar, Bernard
TI - Problèmes de Cauchy hyperboliques en dimension infinie
JO - Séminaire Paul Krée
PY - 1977-1978
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 29
LA - fre
KW - Cauchy problem; strictly hyperbolic differential operators; infinite- dimensional Hilbert space; Carleman estimate; a priori estimate; existence and uniqueness theorems; parametrix; Fourier integral operators
UR - http://eudml.org/doc/112851
ER -

References

top
  1. [1] Bargmann ( V.). - On a Hilbert space of analytic functions and an associated integral transform, II : A family of related function spaces application to distribution theory, Comm. on pure and applied Math., t. 20, 1967, p. 1-101. Zbl0149.09601MR201959
  2. [2] Berezin ( F.A.). - Wick and Anti-Wick operators symbols, [en Russe] Mat. Sbornik, t. 86(128), 1971, p. 578-610 ; [en Anglais] Math. USSR-Sbornik, t. 17, 1971, p. 577-606. Zbl0247.47018MR291839
  3. [3] Duistermatt ( J.J.). - Fourier integral operators. - New York, Courant Institute of mathematical Sciences, 1973. Zbl0272.47028MR451313
  4. [4] Duistermaat ( J.J.) and Hörmander ( L.). - Fourier intégral operators, II, Acta Math., Uppsala, t. 128, 1972, p. 183-269. Zbl0232.47055MR388464
  5. [5] Gross ( L.). - Potential theory on Hilbert space, J. of funct. Analysis, t. 1, 1967, p. 123-181. Zbl0165.16403MR227747
  6. [6] Hörmander ( L.). - Linear partial differential operators. - Berlin, Springer-Verlag, 1963 (Die Grundlehren der mathematischen Wissenschaften, 116). Zbl0108.09301MR161012
  7. [7] Hörmander ( L.). - Fourier integral operators, I, Acta Math., Uppsala, t. 127, 1971, p. 79-183. Zbl0212.46601MR388463
  8. [8] Krée ( P.). - Calcul d'intégrales et de dérivées en dimension infinie, J. of funct. Analysis, t. 31, 1979 (à paraître). Zbl0417.46048MR525949
  9. [9] Krée ( P.) and Raczka ( R.). - Kernels and symbols of operators in quantum field theory, Ann. Inst. H. Poincaré, Section A, t. 28, 1978, p. 41-73. Zbl0386.47015MR482179
  10. [10] Lascar ( B.). - Théorème de Cauchy-Kovalewsky et théorème d'unicité d'Holmgren pour des fonctions d'une infinité de variables, C. R. Acad. Sc. Paris, t. 282, 1976, Série A, p. 691-694. Zbl0333.35001MR410044
  11. [11] Lascar ( B.). - Propriétés locales d'espaces de Sobolev en dimension infinie., Comm. in partial diff. Equations, t. 1, 1976, p. 561-584. Zbl0358.46025MR415316
  12. [12] Lascar ( B.). - Une condition nécessaire et suffisante d'ellipticité en dimension infinie, Comm. in partial diff. Equations, t. 2, 1977, p. 31-57. Zbl0377.58011MR632077
  13. [13] Lascar ( B.). - Equations aux dérivées partielles en dimension infinie, Thèse Doctorat d'Etat, Université P. et M. Curie, 1978. Zbl0403.35099
  14. [14] Schwartz ( L.). - Radon measures on arbitrary topological spaces and cylindrical measures. - Bombay, Oxford University Press, 1973 (Tata Institute of fundamental Research. Studies in Mathematics, 6). Zbl0298.28001MR426084
  15. [15] Trèves ( F.). - Linear partial differential operators with constant coefficients. - New York, Gordon and Breach, 1966 (Mathematics and its Applications, 6). Zbl0164.40602MR224958
  16. [16] Trèves ( F.). - Topological vector spaces, distributions and kernels. - New York, Academic Press, 1967 (Pure and applied Mathematics. Academic Press, 25). Zbl0171.10402MR225131
  17. [17] Višik( M.I.) and Bleher ( P.). - Une classe d'opérateurs pseudo-différentiels d'une infinité de variables, [en Russe] Mat. Sbornik, t. 86(128), 1971, p. 446-494 ; [en Anglais] Math. USSR-Sbornik, t. 15, 1971, p. 443-491. Zbl0248.35109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.