Un principe de sous-suites dans la théorie des probabilités

Shrishti Dhav Chatterji

Séminaire de probabilités de Strasbourg (1972)

  • Volume: 6, page 72-89

How to cite

top

Chatterji, Shrishti Dhav. "Un principe de sous-suites dans la théorie des probabilités." Séminaire de probabilités de Strasbourg 6 (1972): 72-89. <http://eudml.org/doc/112967>.

@article{Chatterji1972,
author = {Chatterji, Shrishti Dhav},
journal = {Séminaire de probabilités de Strasbourg},
language = {fre},
pages = {72-89},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Un principe de sous-suites dans la théorie des probabilités},
url = {http://eudml.org/doc/112967},
volume = {6},
year = {1972},
}

TY - JOUR
AU - Chatterji, Shrishti Dhav
TI - Un principe de sous-suites dans la théorie des probabilités
JO - Séminaire de probabilités de Strasbourg
PY - 1972
PB - Springer - Lecture Notes in Mathematics
VL - 6
SP - 72
EP - 89
LA - fre
UR - http://eudml.org/doc/112967
ER -

References

top
  1. [1] Banach, S. et Saks, S. (1930) Sur la convergence forte dans les champs Lp Studia Math. 2, 51-67. JFM56.0932.01
  2. [2] Burkholder, D.L. (1966) Martingales transforms. Ann. Math. Statist.37, 1494-1504. Zbl0306.60030MR208647
  3. [3] Burkholder, D.L.et Gundy R.F. (1970) Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math.124, 249-304. Zbl0223.60021MR440695
  4. [4] Chatterji, S.D. (1969) An Lp - convergence theorem. Ann. Math. Statist.40, 1068-1070. Zbl0176.48101MR251769
  5. [5] Chatterji, S.D. (1969) Un théorème général de type ergodique. Colloque C.N.R.S. Probabilités sur les structures algébriques. Zbl0232.46035MR409762
  6. [6] Chatterji, S.D. (1970) A général strong law. Inventiones Math.9, 235-245. Zbl0193.09301MR266276
  7. [7] Davis, B. (1970) On the integrability of the martingale square function. Israel J. Math.8, 187-190. Zbl0211.21902MR268966
  8. [8] Hartman, P. et Wintner, A. (1941) On the law of the iteratad logarithm. Amer. J. Math.63, 169-176. Zbl0024.15802MR3497JFM67.0460.03
  9. [9] Komlòs, J. (1967) A generalization of a problem of Stainhaus. Acta Math. Acad. Sci. Hung.18, 217-229. Zbl0228.60012MR210177
  10. [10] Morgenthaler, G. (1955) A central limit theorem for uniformly bounded orthonormal systems. Trans. Amer. Math. Soc.79, 281-311. Zbl0065.05205MR70876
  11. [11] Révész, P. (1965) On a problem of Steinhaus. Acta Math. Acad. Sci. Hung.16, 310-318. Zbl0203.19502MR185647
  12. [12] Salem, R. et Zygmund, A. (1947) On lacunary trigonometric series I. Proc. Nat. Acad. Sci.33, 333-33 Zbl0029.11902MR22263
  13. [13] Salem, R. et Zygmund, A. (1954) Some properties of trigonometric series whose terms have random signs. Acta Math.91, 245-301. Zbl0056.29001MR65679
  14. [14] Stout, W.F. (1970) A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahr. verw. Geb.15, 279-290. Zbl0209.49004MR293701
  15. [15] Strassen, V. (1966) A converse to the law of the iterated logarithm. Z. Wahr. verw. Geb.4, 265-268. Zbl0141.16501MR200965
  16. [16] Weiss Mary, (1959) On the law of the iterated logarith for uniformly bounded orthonormal systems. Trans. Amer. Math. Soc.92, 531-553. Zbl0086.05401MR107117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.