Processus de Galton-Watson

Elisabeth Khalili-Françon

Séminaire de probabilités de Strasbourg (1973)

  • Volume: 7, page 122-135

How to cite

top

Khalili-Françon, Elisabeth. "Processus de Galton-Watson." Séminaire de probabilités de Strasbourg 7 (1973): 122-135. <http://eudml.org/doc/112974>.

@article{Khalili1973,
author = {Khalili-Françon, Elisabeth},
journal = {Séminaire de probabilités de Strasbourg},
language = {fre},
pages = {122-135},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Processus de Galton-Watson},
url = {http://eudml.org/doc/112974},
volume = {7},
year = {1973},
}

TY - JOUR
AU - Khalili-Françon, Elisabeth
TI - Processus de Galton-Watson
JO - Séminaire de probabilités de Strasbourg
PY - 1973
PB - Springer - Lecture Notes in Mathematics
VL - 7
SP - 122
EP - 135
LA - fre
UR - http://eudml.org/doc/112974
ER -

References

top
  1. [1] Darling D.A.The Galton-Watson process with infinite mean, J. Appl. Prob.7 (1970), 455-456. Zbl0201.19302MR267648
  2. [2] Harris T.E.The theory of branching processes, Springer Verlag, Berlin1963. Zbl0117.13002MR163361
  3. [3] Heathcote C.R.A branching process allowing immigration, J. Roy Statist. Soc. Ser B 27 (1965), 138-143. Zbl0139.13902MR193680
  4. Corrections and comments on the paper "A branching process allowing immigration", J. Roy. Statist. Soc. Ser B 28 (1966),213-217. Zbl0139.13902MR193681
  5. [4] Heathcote C.R., Seneta E., Vere-Jones D.A refinement of two theorems in the theory of branching processes, Theor. Prob. Applic.12 (1967), 297-301. Zbl0185.44902MR217889
  6. [5] Heyde C.C.Extension of a result of Seneta for the supercritical Galton-Watson process, Ann. Math. Statist.41 (1970), 739-742. Zbl0195.19201MR254929
  7. [6] Joffe A.On the Galton-Watson branching processes with mean less than one, Ann. Math. Statist.38 (1967), 264-266. Zbl0153.20602MR205337
  8. [7] Joffe A., Spitzer F.On multitype branching process with ρ ≤ 1 , J. Math. Anal. Appl.19 (1967), 409-430. Zbl0178.19504MR212895
  9. [8] Kesten H. , Ney P., Spitzer F.The Galton-Watson process with mean one and finite variance, Theor. Prob. Applic.11 (1966), 513-540. Zbl0158.35202MR207052
  10. [9] Khalili-Françon E.Le processus de Galton-Watson : généralisation d'un théorème de Harris à tous les cas unitypiques ou multitypiques, Thèse de spécialité, Université de Strasbourg I, 1972 . 
  11. [10] Kiyoshi K., Watanabe S., Branching processes with immigration and related limit theorems, Theor. Prob. Applic.16 (1971), 36-55. Zbl0242.60034MR290475
  12. [11] Lamperti J., Ney P.Conditioned branching processes and their limiting diffusions,Theor. Prob. Applic.13 (1968),128-139. Zbl0253.60073MR228073
  13. [12] Pakes A.G.On the critical Galton-Watson process with immigration, J. Austral. Math. Soc.12 (1971), 476-482. Zbl0249.60045MR307370
  14. [13] Pakes A.G.Some limit theorems for the total progeny of a branching process, Advances Appl. Prob.3(1971), 176-192. Zbl0218.60075MR283892
  15. [14] Quine M.P.The multitype Galton-Watson process with immigration, J. Appl. Probability7 (1970), 411-422. Zbl0201.19301MR876165
  16. [15] Seneta E., Vere-Jones D.On quasi-stationary distributions in discrete time Markov chains with a denumerable infinity of states, J.Appl. Prob.3 (1966), 403-434. Zbl0147.36603MR207047
  17. [16] Seneta E.On recent theorems concerning the supercritical Galton-Watson process, Ann.Math. Stat.39 (1968), 2098-2102. Zbl0176.47603MR234530
  18. [17] Seneta E.An explicit-limit theorem for the critical Galton-Watson process with immigration, J. Roy Statist. Soc. Ser B 32 (1970), 149-152. Zbl0198.52002MR266320
  19. [18] Yaglom M.A.Certain limit theorems of the theory of branching random processes, Reports of the Academy of Sciences of USSR56 (1947), 795-798. Zbl0041.45602MR22045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.