Applications du temps local aux équations différentielles stochastiques unidimensionnelles

Jean-François Le Gall

Séminaire de probabilités de Strasbourg (1983)

  • Volume: 17, page 15-31

How to cite

top

Le Gall, Jean-François. "Applications du temps local aux équations différentielles stochastiques unidimensionnelles." Séminaire de probabilités de Strasbourg 17 (1983): 15-31. <http://eudml.org/doc/113432>.

@article{LeGall1983,
author = {Le Gall, Jean-François},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {strong solutions; local time; comparison and convergence; pathwise uniqueness},
language = {fre},
pages = {15-31},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Applications du temps local aux équations différentielles stochastiques unidimensionnelles},
url = {http://eudml.org/doc/113432},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Le Gall, Jean-François
TI - Applications du temps local aux équations différentielles stochastiques unidimensionnelles
JO - Séminaire de probabilités de Strasbourg
PY - 1983
PB - Springer - Lecture Notes in Mathematics
VL - 17
SP - 15
EP - 31
LA - fre
KW - strong solutions; local time; comparison and convergence; pathwise uniqueness
UR - http://eudml.org/doc/113432
ER -

References

top
  1. [1] M.T. Barlow : One dimensional differential equation with no strong solutionJ. London Math. Soc. (2), 26 (1982), 330-347. Zbl0456.60062MR675177
  2. [2] N. Ikeda, S. Watanabe : Stochastic differential equations and diffusion processes. North Holland mathematical library-Kodansha (1981). Zbl0495.60005MR637061
  3. [3] S. Kawabata, T. Yamada : On some limit theorems for solutions of stochastic differential equations. Séminaire de probabilités XVI. Lecture Notes in Mathematics, 920, Springer Verlag, Berlin (1982). Zbl0484.60052MR658704
  4. [4] P.A. Meyer : Un cours sur les intégrales stochastiques. Séminaire de probabilités X. Lecture Notes in Mathematics, 511, p. 245-400, Springer Verlag, Berlin (1976). Zbl0374.60070MR501332
  5. [5] S. Nakao : On the pathwise uniqueness of solutions of stochastic differential equations. Osaka J. of Mathematics, 9 (1972), p. 513-518. Zbl0255.60039MR326840
  6. [6] Y. Okabe, A. Shimizu : On the pathwise uniqueness of solutions of stochastic differential equations. J. Math. Kyoto University, 15 (1975) p. 455-466. Zbl0353.60055MR380989
  7. [7] E. Perkins : Local time and pathwise uniqueness for stochastic differential equations. Séminaire de probabilités XVI, Lecture notes in Maths.920 p. 201-208, Springer Verlag, Berlin (1982). Zbl0485.60057MR658680
  8. [8] D.W. Stroock, S.R.S. Varadhan : Multidimensional diffusion processes, Grundlehren der Math. Wissenschaften, 253 , Springer Verlag, Berlin (1979). Zbl0426.60069MR532498
  9. [9] A.Y. Veretennikov : On the strong solutions of stochastic differential equations. Theory of probability and its applications, 29 (1979) p. 354-366. Zbl0434.60064
  10. [10] T. Yamada : On a comparison theorem for solutions of stochastic differential equations and its applications. J. Math . Kyoto University, 13 (1973), p. 497-512. Zbl0277.60047MR339334
  11. [11] T. Yamada, S. Watanabe : On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto University11 (1971), p. 155-167. Zbl0236.60037MR278420
  12. [12] M. Yor : Sur la continuité des temps locaux associés à certaines semimartingales, Astérisque52-53 (1978), p. 23.35. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.