Strong existence, uniqueness and non-uniqueness in an equation involving local time
Martin T. Barlow; Edwin A. Perkins
Séminaire de probabilités de Strasbourg (1983)
- Volume: 17, page 32-61
Access Full Article
topHow to cite
topBarlow, Martin T., and Perkins, Edwin A.. "Strong existence, uniqueness and non-uniqueness in an equation involving local time." Séminaire de probabilités de Strasbourg 17 (1983): 32-61. <http://eudml.org/doc/113450>.
@article{Barlow1983,
author = {Barlow, Martin T., Perkins, Edwin A.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {local time},
language = {eng},
pages = {32-61},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Strong existence, uniqueness and non-uniqueness in an equation involving local time},
url = {http://eudml.org/doc/113450},
volume = {17},
year = {1983},
}
TY - JOUR
AU - Barlow, Martin T.
AU - Perkins, Edwin A.
TI - Strong existence, uniqueness and non-uniqueness in an equation involving local time
JO - Séminaire de probabilités de Strasbourg
PY - 1983
PB - Springer - Lecture Notes in Mathematics
VL - 17
SP - 32
EP - 61
LA - eng
KW - local time
UR - http://eudml.org/doc/113450
ER -
References
top- 1. N. El Karoui, M. Chaleyat-Maurel. Un problème de réflexion et ses applications au temps local et aux equations différentielles stochastiques sur R. Cas continu. In: Temps Locaux-Astérisque52-53, 117-144 (1978).
- 2. N. El KarouiSur les montées des semi-martingales. In: Temps Locaux-Astérisque52-53, 63-72 (1978).
- 3. M. Emery, E. Perkins. La Filtration de B+L. Z. Wahrscheinlichkeitstheorie verw. Geb.59, 383-390 (1982). Zbl0466.60073MR721634
- 4. J.M. Harrison, L.A. Shepp. On skew Brownian motion. Ann. of Probability9, 309-313 (1981). Zbl0462.60076MR606993
- 5. D. Hoover, E. Perkins. Nonstandard construction of the stochastic integral and applications to stochastic differential equations I, II. (To appear in Trans. Amer. Math. Soc.). Zbl0533.60063MR678335
- 6. K. Ito. Poisson point processes attached to Markov processes. Proc. 6th Berk. Symp. Math. Statist. Prob., 225-239 (1970). Zbl0284.60051MR402949
- 7. J. Jacod, J. Memin. Weak and strong solutions of stochastic differential equations: existence and uniqueness. In Stochastic Integrals, Lect. Notes. Math.851, Springer (1981). Zbl0471.60066MR620991
- 8. H.J. Keisler. An infinitesimal approach to stochastic analysis. (To appear as an A.M.S. Memoir). Zbl0529.60062MR732752
- 9. S. Kosciuk. Stochastic solutions to partial differential equations. Ph.D. thesis, U. of Wisconsin (1982). Zbl0521.60073MR698955
- 10. J.-F. LeGall. Temps locaux et equations différentielles stochastiques. Thèse de troisième cycle, Paris VI (1982).
- 11. P.A. Loeb. An introduction to nonstandard analysis and hyperfinite probability theory. In: Probabilistic Analysis and Related Topics Vol. 2, 105-142, New York : Academic Press (1979). Zbl0441.03027MR556680
- 12. P. Protter, A.-S. Sznitman. An equation involving local time. Sem. Prob. XVII. Lect. Notes Math.986, Springer Zbl0509.60078MR770395
- 13. T. Yamada, S. Watanabe. On the uniqueness of solutions of stochastic differential equations I. J. Math. Kyoto Univ.II, 155-167 (1971). Zbl0236.60037MR278420
- 14. M. Yor. Sur la continuité des temps locaux associés à certaines semi-martingales. In: Temps Locaux-Astérisque52-53, 23-35 (1978).
- 15. A. Dvoreksky, P. Erdos, S. Kakutani. Non-increasing everywhere of the Brownian motion process. Proc. 4th Berk. Sympl Math. Statist. Prob.II, 103-116 (1961). Zbl0111.15002
- 16. J.W. Pitman. One dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Prob.7, 511-526 (1975). Zbl0332.60055MR375485
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.