Application du calcul de Malliavin aux équations différentielles stochastiques sur le plan

David Nualart

Séminaire de probabilités de Strasbourg (1986)

  • Volume: 20, page 379-395

How to cite

top

Nualart, David. "Application du calcul de Malliavin aux équations différentielles stochastiques sur le plan." Séminaire de probabilités de Strasbourg 20 (1986): 379-395. <http://eudml.org/doc/113558>.

@article{Nualart1986,
author = {Nualart, David},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {two-parameter process; two-parameter Wiener process; Malliavin's techniques; non-degeneracy conditions on the coefficients; absolute continuity of the law},
language = {fre},
pages = {379-395},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Application du calcul de Malliavin aux équations différentielles stochastiques sur le plan},
url = {http://eudml.org/doc/113558},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Nualart, David
TI - Application du calcul de Malliavin aux équations différentielles stochastiques sur le plan
JO - Séminaire de probabilités de Strasbourg
PY - 1986
PB - Springer - Lecture Notes in Mathematics
VL - 20
SP - 379
EP - 395
LA - fre
KW - two-parameter process; two-parameter Wiener process; Malliavin's techniques; non-degeneracy conditions on the coefficients; absolute continuity of the law
UR - http://eudml.org/doc/113558
ER -

References

top
  1. [1] J.M. Bismut: Martingales, the Malliavin Calculus and Hypoellipticity under general Hörmander's conditions. Z. Wahrscheinlichkeitstheorie verw. Gebiete56, 469-505 (1981). Zbl0445.60049MR621660
  2. [2] R. Cairoli: Sur une équation différentielle stochastique. C.R. Acad. Sc.Paris274, 1739-1742 (1972). Zbl0244.60045MR301796
  3. [3] R. Cairoli, J.B. Walsh: Stochastic integrals in the plane. Acta Math.134, 111-183 (1975). Zbl0334.60026MR420845
  4. [4] B. Hajek: Stochastic equations of hyperbolic type and a two-parameter Stratonovich calculus. Ann. Probability, 10, 451-463 (1982). Zbl0478.60069MR647516
  5. [5] N. Ikeda, S. Watanabe: Stochastic differential equations and diffusion processes. North Holland (1981). Zbl0495.60005MR637061
  6. [6] P. Malliavin: Stochastic calculus of variations and hypoelliptic operators. Proceedings of the International Conference on Stochastic Differential Equations of Kyoto1976, pp. 195-263, Wiley (1978). Zbl0411.60060
  7. [7] D. Nualart, M. Sanz: Malliavin calculus for two-parameter Wiener functionals. Preprint. Zbl0595.60065
  8. [8] I. Shigekawa: Derivatives of Wiener functionals and absolute continuity of induced measures. J. Math. Kyoto Univ.20-2, 263-289 (1980). Zbl0476.28008MR582167
  9. [9] D.W. Stroock: The Malliavin calculus, a functional analytic approach. Journal of Functional Analysis44, 212-257 (1981). Zbl0475.60060MR642917
  10. [10] D.W. Stroock: Some application of stochastic calculus to partial differential equations. Lecture Notes in Math.976, 267-382 (1983). Zbl0494.60060
  11. [11] J. Yeh: Existence of strong solutions for stochastic differential equations in the plane. Pacific J. Math.97, 217-247 (1981). Zbl0516.60068MR638191
  12. [12] M. Zakai: The Malliavin Calculus. Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.