Un théorème de convergence fonctionnelle pour les intégrales stochastiques

Gilles Pagès

Séminaire de probabilités de Strasbourg (1986)

  • Volume: 20, page 572-611

How to cite

top

Pagès, Gilles. "Un théorème de convergence fonctionnelle pour les intégrales stochastiques." Séminaire de probabilités de Strasbourg 20 (1986): 572-611. <http://eudml.org/doc/113573>.

@article{Pagès1986,
author = {Pagès, Gilles},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {functional limit theorem; semimartingales; Skorokhod topology; convergence in law; variation convergence; convergence of the local characteristics},
language = {fre},
pages = {572-611},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Un théorème de convergence fonctionnelle pour les intégrales stochastiques},
url = {http://eudml.org/doc/113573},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Pagès, Gilles
TI - Un théorème de convergence fonctionnelle pour les intégrales stochastiques
JO - Séminaire de probabilités de Strasbourg
PY - 1986
PB - Springer - Lecture Notes in Mathematics
VL - 20
SP - 572
EP - 611
LA - fre
KW - functional limit theorem; semimartingales; Skorokhod topology; convergence in law; variation convergence; convergence of the local characteristics
UR - http://eudml.org/doc/113573
ER -

References

top
  1. [1] P. Billingsley : Convergence of Probability measure. Wiley, 1968. Zbl0172.21201MR233396
  2. [2] J. Jacod : Weak and strong solutions for stochastic differential equations. Stochastics, 3, 171-191, 1980. Zbl0434.60061MR573202
  3. [3] J. Jacod : Théorèmes limites pour les processus. Cours de l'Ecole d'Eté de St-Flour. Lecture Notes in Mathematics, n° 117, 1985. Zbl0565.60030MR883648
  4. [4] J. Jacod, J. Memin et M. Metivier : On tightness and stopping times. Stochastic and their applications14, 2, 1-45, 1982. Zbl0501.60029MR679668
  5. [5] T. Lindvall : Weak convergence of probability measures and random functions in the functions space D[O,+∞[. Journal of Applied Probability10, 109-121, 1973. Zbl0258.60008MR362429
  6. [6] G. Pagès : Théorèmes limites pour les semi-martingalesThèse de 3ème cycle (Laboratoire de Probabilités et Applications. Paris VI). 1985. 
  7. [7] C. Stone : Weak convergence of stochastic processes defined on a semi-finite interval. Proceedings of American Mathematical Society14, 694-696, 1963. Zbl0116.35602MR153046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.