Temps local et superchamp
Séminaire de probabilités de Strasbourg (1987)
- Volume: 21, page 176-190
Access Full Article
topHow to cite
topLe Jan, Yves. "Temps local et superchamp." Séminaire de probabilités de Strasbourg 21 (1987): 176-190. <http://eudml.org/doc/113589>.
@article{LeJan1987,
author = {Le Jan, Yves},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {local time of symmetric Markov processes; supersymmetry; Green's function of a transient symmetric Markov process},
language = {eng},
pages = {176-190},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Temps local et superchamp},
url = {http://eudml.org/doc/113589},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Le Jan, Yves
TI - Temps local et superchamp
JO - Séminaire de probabilités de Strasbourg
PY - 1987
PB - Springer - Lecture Notes in Mathematics
VL - 21
SP - 176
EP - 190
LA - eng
KW - local time of symmetric Markov processes; supersymmetry; Green's function of a transient symmetric Markov process
UR - http://eudml.org/doc/113589
ER -
References
top- [B] F.A. Berezin : The method of second quantization. Academic Press, New-York (1966). Zbl0151.44001MR208930
- [F] M. Fukushima : Dirichlet forms and Markov Processes. North Holland1980. Zbl0422.31007MR569058
- [D] E.B. Dynkin : Gaussian and Non gaussian Random fields associated with Markov processes. J.F.A.55, 344-376, 1984. Zbl0533.60061MR734803
- [S] P. Sheppard : On the Ray Knight property of local times. J. London Math. Soc.31, 377-384 (1985). Zbl0535.60070MR809960
- [L] J.M. Luttinger : The asymptotic evaluation of a class of path integrals. Preprint. (non rigoureux. Il constitue cependant une de nos principales sources cf. début du chapitre 4).
- [C.K] M. Campanino & A. Klein : A supersymmetric Transfer Matrix and differentiability of the density of states in the one dimensional Anderson model. Preprint. (Les mêmes résultats ont été étudiés par des méthodes utilisant précisément les temps locaux dans) :
- [M.S] P. March & A.S. Sznitman : Some connections between excursion theory and the discrete random schrödinger equation with applications to analycity and smoothness properties of the density of states in one dimension. (A paraître).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.