Intégrale multiple de Stratonovich pour le processus de Poisson

Josep Lluis Solé; Frederic Utzet

Séminaire de probabilités de Strasbourg (1991)

  • Volume: 25, page 270-283

How to cite


Solé, Josep Lluis, and Utzet, Frederic. "Intégrale multiple de Stratonovich pour le processus de Poisson." Séminaire de probabilités de Strasbourg 25 (1991): 270-283. <>.

author = {Solé, Josep Lluis, Utzet, Frederic},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {multiple Stratonovich integral; multiple Itô-Poisson integral; Hu-Meyer formula; Charlier polynomials},
language = {eng},
pages = {270-283},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Intégrale multiple de Stratonovich pour le processus de Poisson},
url = {},
volume = {25},
year = {1991},

AU - Solé, Josep Lluis
AU - Utzet, Frederic
TI - Intégrale multiple de Stratonovich pour le processus de Poisson
JO - Séminaire de probabilités de Strasbourg
PY - 1991
PB - Springer - Lecture Notes in Mathematics
VL - 25
SP - 270
EP - 283
LA - eng
KW - multiple Stratonovich integral; multiple Itô-Poisson integral; Hu-Meyer formula; Charlier polynomials
UR -
ER -


  1. [1] D.D. Engel, The multiple stochastic integral. Mem. Am. Math. Soc., Vol 38, No 265 (1982). Zbl0489.60064MR660396
  2. [2] Y.Z. Hu et P.A. Meyer, Sur les intégrales multiples de Stratonovich. Sém. Prob. XXII, Lect. Notes in Math.1321, Springer-Verlag, 1988, pp. 72-81. Zbl0644.60082MR960509
  3. [3] K. Ito, Multiple Wiener Integral. J.Math. Soc. Japan, 3 (1951), pp. 157-164. Zbl0044.12202MR44064
  4. [4] K. Ito, Spectral type of the shift transformations of differential processes with stationary increments. Trans. Amer. Math. Soc., Vol 81 (1956), pp. 253-263. Zbl0073.35303MR77017
  5. [5] Y.M. Kabanov, On extended stochastic integrals. Th. Prob. App.20 (1975), pp. 710-722. Zbl0355.60047MR397877
  6. [6] O. Kallenberg and J. Szulga, Multiple integration with respect to Poisson and Levy processes. Probability Theory and Rel. Fields83 (1989), pp. 101-134. Zbl0681.60049MR1012497
  7. [7] P.A. Meyer, Un cours sur les intégrales stochastiques. Sém. Prob. X, Lect. Notes in Math. 511, Springer-Verlag, 1976, pp.245-400. Zbl0374.60070MR501332
  8. [8] D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrals. Probability Theory and Rel. Fields78 (1988), pp. 535-581. Zbl0629.60061MR950346
  9. [9] D. Nualart and M. Zakai, On the relation between the Stratonovich and Ogawa integrals. Ann. Prob. Vol 17, No 4 (1989), pp. 1536-1540. Zbl0683.60035MR1048944
  10. [10] H. Ogura, Orthogonal functionals of the Poisson process. IEEE Trans. Inf. Th.18 (1972), pp. 473-481. Zbl0244.60044MR404572
  11. [11] J. Rosinski and J. Szulga, Product random measures and double stochastic integrals. In, Martigale theory in harmonic analysis and Banach spaces. Lect. Notes in Math.939, Springer-Verlag, 1982, pp. 181-199. Zbl0499.60045MR668546
  12. [12] J. Ruiz De Chavez , Espaces de Fock pour les processus de Wiener et de Poissson. Sèm. Prob.XIX, Lect. Notes in Math.1123, Springer-Verlag, 1985, pp. 230-241. Zbl0563.60040MR889481
  13. [13] A. Segall and T. Kailath, Orthogonal functionals of independent increment processes. IEEE Trans. Inf. Th.22 (1976), pp. 287-298. Zbl0353.60080MR413257
  14. [14] J.Ll. Soleand F. Utzet, Stratonovich integral and trace. Stochastics and Stoc. Rep.29 (1990), pp. 203-220. Zbl0706.60056MR1041036
  15. [15] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups. Prob Math. Stat.3 (1984), pp. 217-239. Zbl0548.60058MR764148

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.