A complete differential formalism for stochastic calculus in manifolds

James R. Norris

Séminaire de probabilités de Strasbourg (1992)

  • Volume: 26, page 189-209

How to cite

top

Norris, James R.. "A complete differential formalism for stochastic calculus in manifolds." Séminaire de probabilités de Strasbourg 26 (1992): 189-209. <http://eudml.org/doc/113796>.

@article{Norris1992,
author = {Norris, James R.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {heat semigroup; stochastic calculus on manifolds},
language = {eng},
pages = {189-209},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A complete differential formalism for stochastic calculus in manifolds},
url = {http://eudml.org/doc/113796},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Norris, James R.
TI - A complete differential formalism for stochastic calculus in manifolds
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 189
EP - 209
LA - eng
KW - heat semigroup; stochastic calculus on manifolds
UR - http://eudml.org/doc/113796
ER -

References

top
  1. [DFN] B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern Geometry - Methods and Applications, Part II, Springer, Berlin, 1985. Zbl0565.57001MR807945
  2. [El] K.D. Elworthy, Stochastic Differential Equations on Manifolds : London Mathematical Society Lecture Note Series 70, Cambridge University Press, Cambridge, 1982. Zbl0514.58001MR675100
  3. [EK] K.D. Elworthy and W.S. Kendall, Factorization of Brownian motion and harmonic maps. In From local times to global geometry, control and physics: Pitman Research Notes in Mathematics150, 75-83, Longman, Harlow, 1986. Zbl0615.60073MR894524
  4. [Em] M. Emery, Stochastic Calculus in Manifolds, Springer, Berlin, 1989. Zbl0697.60060MR1030543
  5. [L] M. Liao, Factorization of diffusions on fibre bundles, Transactions of the American Mathematical Society311, 813-827, 1989. Zbl0682.58051MR929666
  6. [N] J.R. Norris, Path integral formulae for heat kernels and their derivatives, Preprint. Zbl0791.58112MR1201558
  7. [V] J. Vilms, Totally geodesic maps, Journal of Differential Geometry4, 73-79, 1970. Zbl0194.52901MR262984

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.