An operator theoretic approach to stochastic flows on manifolds
Séminaire de probabilités de Strasbourg (1992)
- Volume: 26, page 514-532
Access Full Article
topHow to cite
topApplebaum, David. "An operator theoretic approach to stochastic flows on manifolds." Séminaire de probabilités de Strasbourg 26 (1992): 514-532. <http://eudml.org/doc/113820>.
@article{Applebaum1992,
author = {Applebaum, David},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {stochastic flows; Brownian motion; Poisson process},
language = {eng},
pages = {514-532},
publisher = {Springer - Lecture Notes in Mathematics},
title = {An operator theoretic approach to stochastic flows on manifolds},
url = {http://eudml.org/doc/113820},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Applebaum, David
TI - An operator theoretic approach to stochastic flows on manifolds
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 514
EP - 532
LA - eng
KW - stochastic flows; Brownian motion; Poisson process
UR - http://eudml.org/doc/113820
ER -
References
top- [AMR] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Addison - Wesley (1983), Springer Verlag (1988) Zbl0508.58001
- [Acc] L. Accardi, Nonrelativistic Quantum Mechanics as a Noncommutative Markof Process, Adv. Math.20, 329-66 (1976) Zbl0367.60119MR484170
- [AFL] L. Accardi, A. Frigerio, J.T. Lewis, Quantum Stochastic Processes, Publ. Res. Inst. Math. Sci.Kyoto18, 94-133 (1982) Zbl0498.60099MR660823
- [App 1] D. Applebaum, Towards a Quantum Theory of Classical Diffusions on Riemannian Manifolds, to appear in proceedings of Trento conference on Quantum Probability, Kluwer (1991) MR1149821
- [App 2] D. Applebaum, Stochastic Flows of Diffeomorphisms on Manifolds Driven by Lévy Processes (preprint).
- [Hud] R.L. Hudson, Algebraic Theory of Quantum Diffusions, SpringerLNM1325, 113-25 (1988). Zbl0654.60049MR960162
- [HuPa] R.L. Hudson, K.R. Parthasarathy, Quantum Ito's Formula and Stochastic Evolution, Commun. Math. Phys.93, 301-23 (1984) Zbl0546.60058MR745686
- [IkWa] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland/Kodansha (1981) Zbl0495.60005MR637061
- [Kun 1] H. Kunita, Lectures on Stochastic Flows and Applications, Tata Institute/Springer—Verlag (1986) Zbl0625.60073MR867686
- [Kun 2] H. Kunita, Stochastic Flows and Stochastic Differential Equations, C U P (1990) Zbl0743.60052MR1070361
- [Mey 1] P.A. Meyer, Elements de Probabilites Quantiques, Seminaire de Probabilites XX (SpringerLNM1204), 186-312 (1986) Zbl0604.60001MR942022
- [Mey 2] P.A. Meyer, Diffusions Quantiques, d'apres Evans-Hudson, Strasbourg preprint (1989)
- [ReSi] M. Reed, B. Simon, Methods of Mathematical Physics, IFunctional Analysis (1980), II, Fourier Analysis, Self-Adjointness (1975), Academic Press MR751959
- [Var] V.S. Varadarajan, Probability in Physics and a Theorem on Simultaneous Observability, Commun. Pure Appl. Maths15189-217 (1962) Zbl0109.44705MR163616
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.