An operator theoretic approach to stochastic flows on manifolds

David Applebaum

Séminaire de probabilités de Strasbourg (1992)

  • Volume: 26, page 514-532

How to cite

top

Applebaum, David. "An operator theoretic approach to stochastic flows on manifolds." Séminaire de probabilités de Strasbourg 26 (1992): 514-532. <http://eudml.org/doc/113820>.

@article{Applebaum1992,
author = {Applebaum, David},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {stochastic flows; Brownian motion; Poisson process},
language = {eng},
pages = {514-532},
publisher = {Springer - Lecture Notes in Mathematics},
title = {An operator theoretic approach to stochastic flows on manifolds},
url = {http://eudml.org/doc/113820},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Applebaum, David
TI - An operator theoretic approach to stochastic flows on manifolds
JO - Séminaire de probabilités de Strasbourg
PY - 1992
PB - Springer - Lecture Notes in Mathematics
VL - 26
SP - 514
EP - 532
LA - eng
KW - stochastic flows; Brownian motion; Poisson process
UR - http://eudml.org/doc/113820
ER -

References

top
  1. [AMR] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Addison - Wesley (1983), Springer Verlag (1988) Zbl0508.58001
  2. [Acc] L. Accardi, Nonrelativistic Quantum Mechanics as a Noncommutative Markof Process, Adv. Math.20, 329-66 (1976) Zbl0367.60119MR484170
  3. [AFL] L. Accardi, A. Frigerio, J.T. Lewis, Quantum Stochastic Processes, Publ. Res. Inst. Math. Sci.Kyoto18, 94-133 (1982) Zbl0498.60099MR660823
  4. [App 1] D. Applebaum, Towards a Quantum Theory of Classical Diffusions on Riemannian Manifolds, to appear in proceedings of Trento conference on Quantum Probability, Kluwer (1991) MR1149821
  5. [App 2] D. Applebaum, Stochastic Flows of Diffeomorphisms on Manifolds Driven by Lévy Processes (preprint). 
  6. [Hud] R.L. Hudson, Algebraic Theory of Quantum Diffusions, SpringerLNM1325, 113-25 (1988). Zbl0654.60049MR960162
  7. [HuPa] R.L. Hudson, K.R. Parthasarathy, Quantum Ito's Formula and Stochastic Evolution, Commun. Math. Phys.93, 301-23 (1984) Zbl0546.60058MR745686
  8. [IkWa] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland/Kodansha (1981) Zbl0495.60005MR637061
  9. [Kun 1] H. Kunita, Lectures on Stochastic Flows and Applications, Tata Institute/Springer—Verlag (1986) Zbl0625.60073MR867686
  10. [Kun 2] H. Kunita, Stochastic Flows and Stochastic Differential Equations, C U P (1990) Zbl0743.60052MR1070361
  11. [Mey 1] P.A. Meyer, Elements de Probabilites Quantiques, Seminaire de Probabilites XX (SpringerLNM1204), 186-312 (1986) Zbl0604.60001MR942022
  12. [Mey 2] P.A. Meyer, Diffusions Quantiques, d'apres Evans-Hudson, Strasbourg preprint (1989) 
  13. [ReSi] M. Reed, B. Simon, Methods of Mathematical Physics, IFunctional Analysis (1980), II, Fourier Analysis, Self-Adjointness (1975), Academic Press MR751959
  14. [Var] V.S. Varadarajan, Probability in Physics and a Theorem on Simultaneous Observability, Commun. Pure Appl. Maths15189-217 (1962) Zbl0109.44705MR163616

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.