Exact rates of convergence to the local times of symmetric Lévy processes

Michael B. Marcus; Jay S. Rosen

Séminaire de probabilités de Strasbourg (1994)

  • Volume: 28, page 102-109

How to cite

top

Marcus, Michael B., and Rosen, Jay S.. "Exact rates of convergence to the local times of symmetric Lévy processes." Séminaire de probabilités de Strasbourg 28 (1994): 102-109. <http://eudml.org/doc/113864>.

@article{Marcus1994,
author = {Marcus, Michael B., Rosen, Jay S.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {local time; symmetric Lévy process; Lévy measure; rates of convergence; Gaussian process},
language = {fre},
pages = {102-109},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Exact rates of convergence to the local times of symmetric Lévy processes},
url = {http://eudml.org/doc/113864},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Marcus, Michael B.
AU - Rosen, Jay S.
TI - Exact rates of convergence to the local times of symmetric Lévy processes
JO - Séminaire de probabilités de Strasbourg
PY - 1994
PB - Springer - Lecture Notes in Mathematics
VL - 28
SP - 102
EP - 109
LA - fre
KW - local time; symmetric Lévy process; Lévy measure; rates of convergence; Gaussian process
UR - http://eudml.org/doc/113864
ER -

References

top
  1. [1] N. Bingham, C. Goldie, and J. Teugals, Regular Variation, Cambridge University Press, Cambridge, 1987. Zbl0617.26001MR898871
  2. [2] D. Khoshnevisan, Exact rates of convergence to Brownian local time, Preprint. Zbl0819.60067MR1303646
  3. [3] N. Kono, On the modulous of continuity of sample functions of Gaussian processes, J. Math. Kyoto Univ.10 (1970), 493-536. Zbl0205.44503MR283867
  4. [4] M.B. Marcus, Holder conditions for Gaussian processes with stationary increments, Trans. Amer. Math. Soc.134 (1968), 29-52. Zbl0186.50602MR230368
  5. [5] M.B. Marcus and J. Rosen, Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes, J. Theor. Probab.5 (1992), 791-825. Zbl0761.60035MR1182681
  6. [6] , p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Probab.20 (1992), 1685-1713. Zbl0762.60069MR1188038
  7. [7] , Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes, Ann. Probab.20 (1992), 1603-1684. Zbl0762.60068MR1188037
  8. [8] , φ-variation of the local times of symmetric Levy processes and stationary Gaussian processes, Seminar on Stochastic Processes, 1992 (Boston), Progress in Probability, vol. 33, Birkhauser, Boston, 1993, pp. 209-220. Zbl0793.60043MR1278084
  9. [9] E.J.G. Pitman, On the behavior of the characteristic function of a probability distribution in the neighbourhood of the origin, J. Australian Math. Soc. Series A 8 (1968), 422-443. Zbl0164.48502MR231423

NotesEmbed ?

top

You must be logged in to post comments.