On conditioning random walks in an exponential family to stay nonnegative

Jean Bertoin; R.A. Doney

Séminaire de probabilités de Strasbourg (1994)

  • Volume: 28, page 116-121

How to cite

top

Bertoin, Jean, and Doney, R.A.. "On conditioning random walks in an exponential family to stay nonnegative." Séminaire de probabilités de Strasbourg 28 (1994): 116-121. <http://eudml.org/doc/113867>.

@article{Bertoin1994,
author = {Bertoin, Jean, Doney, R.A.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {random walk; martingales; -transform; exponential family},
language = {fre},
pages = {116-121},
publisher = {Springer - Lecture Notes in Mathematics},
title = {On conditioning random walks in an exponential family to stay nonnegative},
url = {http://eudml.org/doc/113867},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Bertoin, Jean
AU - Doney, R.A.
TI - On conditioning random walks in an exponential family to stay nonnegative
JO - Séminaire de probabilités de Strasbourg
PY - 1994
PB - Springer - Lecture Notes in Mathematics
VL - 28
SP - 116
EP - 121
LA - fre
KW - random walk; martingales; -transform; exponential family
UR - http://eudml.org/doc/113867
ER -

References

top
  1. [1] Bertoin, J. and Doney, R.A.: On conditioning a random walk to stay nonnegative, Ann. Probab. (to appear). Zbl0834.60079MR1331218
  2. [2] Bingham, N.H., Goldie, C.M., and Teugels, J.L.: Regular Variation. Cambridge University Press1987, Cambridge. Zbl0617.26001MR898871
  3. [3] Doob, J.L.: Discrete potential theory and boundaries, J. Math. Mecha.8 (1959), 433-458. Zbl0101.11503MR107098
  4. [4] Keener, R.W.: Limit theorems for random walks conditioned to stay positive, Ann. Probab.20 (1992), 801-824. Zbl0756.60062MR1159575
  5. [5] Petrov, V.V.: On the probability of large deviations for sums of independent random variables, Theory Probab. Appl.10 (1965), 287-97. Zbl0235.60028MR185645
  6. [6] Revuz, D.: Markov Chains. North Holland1975, Amsterdam. Zbl0332.60045MR415773
  7. [7] Spitzer, F.:Principles of Random Walks. Van Nostrand1964, Princeton. Zbl0119.34304MR171290
  8. [8] Veraverbeke, N. and Teugels, J.L.: The exponential rate of convergence of the maximum of a random walk, J. Appl. Prob.12 (1975), 279-288. Zbl0307.60061MR373017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.