Continuous Maassen kernels and the inverse oscillator

Wilhelm von Waldenfels

Séminaire de probabilités de Strasbourg (1996)

  • Volume: 30, page 117-161

How to cite

top

Waldenfels, Wilhelm von. "Continuous Maassen kernels and the inverse oscillator." Séminaire de probabilités de Strasbourg 30 (1996): 117-161. <http://eudml.org/doc/113924>.

@article{Waldenfels1996,
author = {Waldenfels, Wilhelm von},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {quantum stochastic differential equation; Maassen kernels; Markovian birth process},
language = {eng},
pages = {117-161},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Continuous Maassen kernels and the inverse oscillator},
url = {http://eudml.org/doc/113924},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Waldenfels, Wilhelm von
TI - Continuous Maassen kernels and the inverse oscillator
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 117
EP - 161
LA - eng
KW - quantum stochastic differential equation; Maassen kernels; Markovian birth process
UR - http://eudml.org/doc/113924
ER -

References

top
  1. [1] Belavkin, V.P.: A quantum non adapted Ito formula and non stationary evolution in Fock scale. Quantum probability and applications. VI, p. 137-180. World Scientific (Singapore) (1992) Zbl0937.60045MR1140634
  2. [2] Glauber, R.J.: Amplifiers, Attenuators and the Quantum Theory of Measurement. In Frontiers in Quantum Optics, ed. by E.R. Pike and S. Sarkar, Vol. X of Malveru Physics Theories (Adam Hilger), Bristol, 1986. MR943859
  3. [3] Haake, F., Walls, D.F.: Overdamped and Amplifying Meters in the Quantum Theory of Measurement. Phys. Rev. A. 36 (1987), p. 730-739. MR901719
  4. [4] Hepp, K., Lieb, E.H.: Phase Transitions in Reservoirdriven Open Systems with Applications to Lasers and Superconductors. Helv. Phys. Acta.46 (1973), p. 573-603. 
  5. [5] Hudson, R.L., Parthasarathy, K.R.: Construction of Quantum Diffusions. Lecture Notes in Mathematics1055, Springer (1984), p. 173-205. Zbl0542.60053MR782904
  6. [6] Lindsay, J.M.: Quantum and non-causal stochastic calculus. Prob. Theory Relat. Fields97, (1993), p. 65-80. Zbl0794.60052
  7. [7] Lindsay, J.M., Maassen, H.: The Stochastic Calculus of Bose Noise. Preprint, Nijmwegen (1988). Zbl0652.60068MR985820
  8. [8] Lindsay, M., Maassen, H.: An Integral Kernel Approach to Noise. Lecture Notes in Mathematics1303, Springer (1988), p. 192-208. Zbl0652.60068MR985820
  9. [9] Maassen, H.: Quantum Markov Processes on Fock Space Described by Integral Kernels. Lecture Notes in Mathematics1136, Springer (1985), p. 361-374. MR819517
  10. [10] Meyer, P.A.: Quantum Probability for Probabilists. Lecture Notes in Mathematics1538, Springer (1993). Zbl0773.60098MR1222649
  11. [11] Palma, G.M., Vaglica, A., Leonardi, C., De Oliveira, F.A.M., Knight, P.L.: Effects of Broadband Squeezing on the Quantum Onset of Superradiance. Optics Communications, 79 (1990), p. 377-380. 
  12. [12] Robinson, P., Maassen, H.: Quantum Stochastic Calculus and the Dynamical Stark Effect. Reports an Math. Phys. Vol. 30 (1991). Zbl0756.60102MR1188395
  13. [13] Waldenfels, W.v.: Spontaneous Light Emission Described by a Quantum Stochastic Differential Equation. Lecture Notes in Mathematics1136, Springer (1985), p. 515-534. Zbl0569.60059MR819530
  14. [14] Waldenfels, W.v.: The Inverse Oscillator in a Heat Bath as a Quantum Stochastic Process. Preprint 630. 1991. SFB123 (Heidelberg). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.