Projection d'une diffusion sur sa filtration lente

Catherine Rainer

Séminaire de probabilités de Strasbourg (1996)

  • Volume: 30, page 228-242

How to cite

top

Rainer, Catherine. "Projection d'une diffusion sur sa filtration lente." Séminaire de probabilités de Strasbourg 30 (1996): 228-242. <http://eudml.org/doc/113930>.

@article{Rainer1996,
author = {Rainer, Catherine},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {real diffusion; slow filtration; Lévy measure; Azéma martingale},
language = {eng},
pages = {228-242},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Projection d'une diffusion sur sa filtration lente},
url = {http://eudml.org/doc/113930},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Rainer, Catherine
TI - Projection d'une diffusion sur sa filtration lente
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 228
EP - 242
LA - eng
KW - real diffusion; slow filtration; Lévy measure; Azéma martingale
UR - http://eudml.org/doc/113930
ER -

References

top
  1. [A] Azéma J. (1985): Sur les fermés aléatoires, Sém. Prob. XIX, LNM1123, p.397-495, Springer Verlag. Zbl0563.60038MR889496
  2. [ARY] Azéma J., Rainer C., Yor M. (1995): Une propriété des martingales pures, dans ce volume. Zbl0857.60076MR1459487
  3. [AY] Azéma J., Yor M. (1989): Etude d'une martingale remarquable, Sém. Prob. XXIII, LN1372, p.88-130, Springer Verlag. Zbl0743.60045MR1022900
  4. [CY] Carmona PH., Yor M. (1991): Processus d'Ornstein-Uhlenbeck : mesure de Lévy de l'inverse du temps local en zéro (note non publiée). 
  5. [DMaMe] Dellacherie C., Maisonneuve B., Meyer P.A. (1992): Probabilités et Potentiel, chap.XVII à XXIV, Hermann. 
  6. [DMe] Dellacherie C., Meyer P.A. (1987): Probabilités et Potentiel, chap. XXII-XVI, Hermann. MR898005
  7. [Kn] Knight F.B. (1980): Characterization of Lévy measures of inverse local times of gap diffusion, Sem. on Stoch. Proc.1980, Birkhäuser, p. 53-78. Zbl0518.60083MR647781
  8. [KoWa] Kotani S., Watanabe S. (1981): Krein's spectral theory of strings and generalized diffusion processus, LNM923, "Funct. Ana. in Markov processes", Springer Verlag. Zbl0496.60080
  9. [M] Méléard S. (1986): Applications du calcul stochastique à l'étude de processus de Markov réguliers sur [0,1], Stochastics19 (1986), p.41-82. Zbl0609.60083MR864337
  10. [R] Rainer C. (1994): Fermés marqués, filtrations lentes et équations de structure, Thèse de Doctorat de l'Université Paris VI. 
  11. [ReY] Revuz D., Yor M. (1991): Continuous Martingales and Brownian Motion, Grundlehren der math. Wiss.293, Springer Verlag. Zbl0731.60002MR1083357
  12. [RoWi] Rogers L.C.G., Williams D. (1987): Diffusions, Markov Processes and Martingales, vol.2, Wiley and Sons. Zbl0627.60001MR921238
  13. [TWi] Truman A., Williams D. (1990): Generalised Arc-Sine Law and Nelson's Stochastic Mechanics of One-Dimensional Time-Homogeneous Diffusions, in: Diffusion processes and related problems in Analysis, Vol 1., Birkhäuser. Zbl0726.60077MR1110160
  14. [Wi] Williams D. (1974): Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc.(3), 28, p.738-768. Zbl0326.60093MR350881
  15. [Y1] Yor M. (1979): Sur le balayage des semimartingales continues, Sém. Prob. XIII, LNM721, Springer Verlag. p.453-471. Zbl0409.60042MR544815
  16. [Y2] Yor M. (1992): Some Aspects of Brownian Motion, Part 1, Some Special functionals, Lectures in Maths.ETH Zürich, Birkhâuser. Zbl0779.60070MR1193919

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.