On Wald's equation. Discrete time case

Leonid I. Galtchouk; Alexandre A. Novikov

Séminaire de probabilités de Strasbourg (1997)

  • Volume: 31, page 126-135

How to cite

top

Galtchouk, Leonid I., and Novikov, Alexandre A.. "On Wald's equation. Discrete time case." Séminaire de probabilités de Strasbourg 31 (1997): 126-135. <http://eudml.org/doc/113947>.

@article{Galtchouk1997,
author = {Galtchouk, Leonid I., Novikov, Alexandre A.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {discrete parameter martingales; Wald's equation},
language = {eng},
pages = {126-135},
publisher = {Springer - Lecture Notes in Mathematics},
title = {On Wald's equation. Discrete time case},
url = {http://eudml.org/doc/113947},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Galtchouk, Leonid I.
AU - Novikov, Alexandre A.
TI - On Wald's equation. Discrete time case
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 126
EP - 135
LA - eng
KW - discrete parameter martingales; Wald's equation
UR - http://eudml.org/doc/113947
ER -

References

top
  1. Azema( J.), Gundy( R.F.), Yor( M.) (1979). Sur l'intégrabilitée uniforme des martingales continues. Séminaire de Probabilités XIV, Lecture Notes in Mathematics, 784, 53-61, Springer-Verlag, Berlin. Zbl0442.60046MR580108
  2. Burkholder ( D.L.), Gundy ( R.F.) (1970). Extrapolation and interpolation of quasilinear operators on martingales. Acta Math., 124, 249-304. Zbl0223.60021MR440695
  3. Galtchouk ( L.I.) (1980). Optional martingales. Mathematical Sbornik, 112 (154), N 4 (8), 483 - 521 (English translation :(1981) Vol.40, N4, 435-468). Zbl0449.60036MR587036
  4. Gundy ( R.F.) (1981). On a theorem of F. and M.Riesz and an equation of A.Wald. Indiana Univ.Math.Journal, 30(4), 589-605. Zbl0466.31006MR620269
  5. Feller, W. (1971). An Introduction to Probability Theory and Its Applications, vol. 2, Wiley, New York. Zbl0219.60003MR270403
  6. Kinderman ( R.P.) (1980). Asymptotic comparisons of functionals of Brownian Motion and Random Walk. Ann. Prob., 8, N6)), 1135-1147. Zbl0445.60038MR602386
  7. Klass ( M.J.) (1988). A best possible improvement of Wald's equation. Ann.prob., 16, N2, 840-853. Zbl0648.60050MR929081
  8. Liptser ( R.Sh.), Shiryaev ( A.N.) (1986). Theory of Martingales, Kluwer Academic Publ. MR1022664
  9. Meyer ( P.-A.) (1972). Martingales and Stochastic Integrals I. Lecture Notes in Mathematics, 284, Springer-Verlag. Zbl0239.60001MR426145
  10. Novikov ( A.A.) (1971). On the moment of stopping of a Wiener process. Teor. Veroythn. Primen., 16, N3, 458-465 (English translation : pp.449- 456). Zbl0258.60037MR315798
  11. Novikov ( A.A.) (1981a). A martingale approach to first passage problems and a new condition for Wald's identity. Proc.of the 3rd IFIP-WG 7/1 Working Conf.,Visegrad 1980,Lecture Notes in Control and Inf.Sci.36, 146-156. Zbl0469.60073MR653657
  12. Novikov ( A.A.) (1981b). Martingale approach to first passage problems of nonlinear boundaries. Proc.Steklov Inst.158, 130-158. Zbl0491.60038MR662841
  13. Novikov ( A.A.) (1982). On the time of crossing of a one-sided nonlinear boundary. Theor.Prob. Appl., 27, N4, 668 - 702 (English translation). Zbl0521.60055MR681458
  14. de la Pena ( V.H.) (1993). Inequalities for tails of adapted processes with an application to Wald's lemma. J. of Theoretic Prob., 6, N2, 285-302. Zbl0780.60018MR1215659
  15. Vallois ( P.) (1991). Sur la loi du maximum et du temps local d'une martingale continue uniformément intégrable. Preprint, Université de Paris VI. MR1111235
  16. Wald ( A.) (1947). Sequential Analysis, Wiley, New York; Zbl0029.15805MR20764

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.