Branching processes, the Ray-Knight theorem, and sticky brownian motion

Jonathan Warren

Séminaire de probabilités de Strasbourg (1997)

  • Volume: 31, page 1-15

How to cite

top

Warren, Jonathan. "Branching processes, the Ray-Knight theorem, and sticky brownian motion." Séminaire de probabilités de Strasbourg 31 (1997): 1-15. <http://eudml.org/doc/113954>.

@article{Warren1997,
author = {Warren, Jonathan},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian motion; Bessel process; continuous-state branching process; stochastic differential equation},
language = {fre},
pages = {1-15},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Branching processes, the Ray-Knight theorem, and sticky brownian motion},
url = {http://eudml.org/doc/113954},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Warren, Jonathan
TI - Branching processes, the Ray-Knight theorem, and sticky brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 1
EP - 15
LA - fre
KW - Brownian motion; Bessel process; continuous-state branching process; stochastic differential equation
UR - http://eudml.org/doc/113954
ER -

References

top
  1. [1] M. Amir. Sticky Brownian motion as the strong limit of a sequence of random walks. Stochastic Processes and their Applications, 39:221-237, 1991. Zbl0744.60097MR1136247
  2. [2] R.J. Chitashvili. On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion. Technical Report BS-R8901, Centre for Mathematics and Computer Science, Amsterdam, 1989. Zbl0914.60026
  3. [3] W. Feller. On boundaries and lateral conditions for the Kolmogorov equations. Annals of Mathematics, Series 2, 65:527-570, 1957. Zbl0084.35503MR90928
  4. [4] J.M. Harrison and A.J. Lemoine. Sticky Brownian motion as the limit of storage processes. Journal of Applied Probability, 18:216-226, 1981. Zbl0453.60072MR598937
  5. [5] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North Holand-Kodansha, Amsterdam and Tokyo, 1981. Zbl0495.60005MR637061
  6. [6] F.B. Knight. Essentials of Brownian motion and Diffusion, volume 18 of Mathematical Surveys. American Mathematical Society, Providence, Rhode-Island, 1981. Zbl0458.60002MR613983
  7. [7] J.F. Le GallCours de troisième cycle, Laboratoire de Probabilités, Paris 6. 1994. 
  8. [8] J.W. Pitman and M. Yor. A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie, 59:425-457, 1982. Zbl0484.60062MR656509
  9. [9] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer, Berlin, 1991. Zbl0731.60002MR1083357
  10. [10] L.C.G. Rogers and D. Williams. Diffusions, Markov processes and Martingales, vol 2: Itô calculus. Wiley, New York, 1987. Zbl0627.60001MR921238
  11. [11] T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of diffusion processes. Zeitschrift für Wahrscheinlichkeitstheorie, 27:37-46, 1973. Zbl0327.60047MR368192
  12. [12] K. Yamada. Reflecting or sticky Markov processes with Lévy generators as the limit of storage processes. Stochastic Processes and their Applications, 52:135-164, 1994. Zbl0811.60067MR1289173
  13. [13] M. Yor. Some remarks concerning sticky Brownian motion. Unpublished, 1989. 
  14. [14] M. Yor. Some aspects of Brownian motion, part 1: Some special functionals. Birkhäuser, 1992. Zbl0779.60070MR1193919

NotesEmbed ?

top

You must be logged in to post comments.