Diffeomorphisms of the circle and the based stochastic loop space
Séminaire de probabilités de Strasbourg (1997)
- Volume: 31, page 322-326
Access Full Article
topHow to cite
topReferences
top- [B] Bismut J.M.: Large deviations and the Malliavin calculus. Progress in Math.45, Birkhäuser (1984). Zbl0537.35003MR755001
- [G.J.P] Getzler E., Jones J.D.S., Petrack S.: Differential forms on loop spaces and the cyclic bar complex. Topology30, 339-373 (1971). Zbl0729.58004MR1113683
- [J.L] Jones J.D.S., Léandre R.: Lp Chen forms on loop spaces. In "Stochastic Analysis", M. T. Barlow and N. H. Bingham editors, 104-162, Cambridge University Press (1991). Zbl0756.58003MR1166409
- [K] Kosyak A.V.: Irreducible regular gaussian representations of the group of the interval and circle diffeomorphism. J. Funct. Anal.125, 493-547 (1994). Zbl0829.22032MR1297679
- [L] Léandre R.: Invariant Sobolev Calculus on the free loop space. To appear in Acta Applicandae Mathematicae. Zbl0895.60055MR1440476
- [M.M] Malliavin M.P., Malliavin P.: An infinitesimally quasi-invariant measure on the group of diffeomorphisms of the circle. In "Integration on loop groups", Publication de l'Université Paris VI (1990). MR1187301
- [N] Nualart D.: The Malliavin calculus and related topics. Springer (1995). Zbl0837.60050MR1344217
- [Sh] Shavgulidze E.T.: Distributions on infinite-dimensional spaces and second quantization in string theories II. In "Vth International Vilnius Conference in Probability and Mathematical Statistics", 359-360 (1989).