A differentiable isomorphism between Wiener space and path group

Shizan Fang; Jacques Franchi

Séminaire de probabilités de Strasbourg (1997)

  • Volume: 31, page 54-61

How to cite

top

Fang, Shizan, and Franchi, Jacques. "A differentiable isomorphism between Wiener space and path group." Séminaire de probabilités de Strasbourg 31 (1997): 54-61. <http://eudml.org/doc/113972>.

@article{Fang1997,
author = {Fang, Shizan, Franchi, Jacques},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {path space; Wiener space; Hodge decomposition},
language = {fre},
pages = {54-61},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A differentiable isomorphism between Wiener space and path group},
url = {http://eudml.org/doc/113972},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Fang, Shizan
AU - Franchi, Jacques
TI - A differentiable isomorphism between Wiener space and path group
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 54
EP - 61
LA - fre
KW - path space; Wiener space; Hodge decomposition
UR - http://eudml.org/doc/113972
ER -

References

top
  1. [A] Aida S.Sobolev spaces over loop groups. J.F.A.127, p. 155-172, 1995. Zbl0823.46034MR1308620
  2. [AM] Arai A. and Mitoma I.De Rham-Hodge-Kodaira decomposition in infinite dimension. Math. Ann.291, p. 51-73, 1991. Zbl0762.58004MR1125007
  3. [D] Driver B.The non-equivalence of Dirichlet forms on path spaces. Stochastic Analysis on Infinite Dimensional Spaces, p. 75-87, Proceedings Baton Rouge 1994, H. Kunita and H.H. Kuo ed. Zbl0819.31005MR1415660
  4. [FF1] Fang S. and Franchi J.Platitude de la structure riemannienne sur les groupes de chemins et identité d'énergie pour les intégrales stochastiques. C.R.A.S.Paris, t. 321, S.1, p. 1371-1376, 1995. Zbl0846.60058MR1363583
  5. [FF2] Fang S. and Franchi J.Flatness of the path group over a compact Lie group and Shigekawa identity. Prepublication n° 310 du laboratoire de probabilités de Paris VI, 1995. MR1363583
  6. [FF3] Fang S. and Franchi J.De Rham-Hodge-Kodaira operator on loop groups. Prepublication n° 341 du laboratoire de probabilités de Paris VI, 1996. MR1469347
  7. [G] Gross L.Uniqueness of ground states for Schrödinger operators over loop groups. J.F.A.112, p. 373-441, 1993. Zbl0774.60059MR1213144
  8. [L] Leandre R.Integration by parts formulas and rotationally invariant Sobolev calculus on free loop spaces. J. Geom. Phys.11, p. 517-528, 1993. Zbl0786.60074MR1230447
  9. [LR] Leandre R. and Roan S.S.A stochastic approach to the Euler-Poincaré number of the loop space over a developpable orbifold. J. Geom. Phys.16, p. 71-98, 1995. Zbl0822.60057MR1325163
  10. [M] Malliavin P.Hypoellipticity in infinite dimension. Diffusion processes and related problems in Analysis, vol. 1, Progress in Probability32, p. 17-33, M. Pinsky ed., Birkhäuser1991. Zbl0723.60059MR1110154
  11. [MM] Malliavin P. and Malliavin M.P.Integration on loop groups I : Quasi invariant measures. J.F.A.93, p. 207-237, 1990. Zbl0715.22024MR1070039
  12. [PU] Pontier M. and Ustunel A.S.Analyse stochastique sur l'espace de Lie-Wiener. C.R.A.S.313, p. 313-316, 1991. Zbl0734.60062MR1126404
  13. [S1] Shigekawa I.De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space. J. Math. Kyoto Univ.26-2, p. 191-202, 1986. Zbl0611.58006MR849215
  14. [S2] Shigekawa I.A quasi homeomorphism on the Wiener space. Proceedings of symposia in pure mathematics57, Stochastic Analysis, p. 473-486, M. Cranston and M. Pinsky ed., 1995. Zbl0821.60059MR1335491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.