Une preuve «standard» du principe d'invariance de Stoll

Benoît Cadre

Séminaire de probabilités de Strasbourg (1997)

  • Volume: 31, page 85-102

How to cite

top

Cadre, Benoît. "Une preuve «standard» du principe d'invariance de Stoll." Séminaire de probabilités de Strasbourg 31 (1997): 85-102. <http://eudml.org/doc/113977>.

@article{Cadre1997,
author = {Cadre, Benoît},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {invariance principle; planar Brownian motion; renormalized intersection local time; random walk; Domb-Joyce measure; polymer measure},
language = {eng},
pages = {85-102},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Une preuve «standard» du principe d'invariance de Stoll},
url = {http://eudml.org/doc/113977},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Cadre, Benoît
TI - Une preuve «standard» du principe d'invariance de Stoll
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 85
EP - 102
LA - eng
KW - invariance principle; planar Brownian motion; renormalized intersection local time; random walk; Domb-Joyce measure; polymer measure
UR - http://eudml.org/doc/113977
ER -

References

top
  1. [1] R.F. Bass, D. Khoshnevisan - Intersection Local Times and Tanaka Formulas, Ann. Inst. Henri Poincaré, vol. 29, no. 3, p.391-418, (1993). Zbl0798.60072MR1246641
  2. [2] P. Billingsley - Convergence of Probability Measures, Wiley and Sons, New-York, (1968). Zbl0172.21201MR233396
  3. [3] A.N. Borodin - On the asymptotic behavior of Local Times of recurrent Random Walks with finite variance, Theory Prob. Appl., vol. XXVI no 4, p.758-772, (1981). Zbl0488.60078
  4. [4] D.C. Brydges, G. Slade - The diffusive phase of a model of self-interacting walks, Probab. Theory Relat. Fields, 103, p.285-315, (1995). Zbl0832.60096MR1358079
  5. [5] B. Cadre - Etudes de convergences en loi de fonctionnelles de processus : Formes quadratiques ou multilinéaires aléatoires, Temps locaux d'intersection de marches aléatoires, Théorème central limite presque sûr, Thèse de l'Université de Rennes I, (1995). 
  6. [6] E. Csàki, P. Révész - Strong invariance for Local Times, Z. Wahrs. verw Gebiete, vol. 62, p.263-278, (1983). Zbl0488.60045MR688990
  7. [7] C. Domb, G.S. Joyce - Cluster expansion for a Polymer Chain, J. Phys. C5, p.956-976, (1975). 
  8. [8] D. Geman, J. Horowitz, J. Rosen - The Local Time of intersection for Brownian Paths in the Plane, Ann. Prob., vol. 12, p.86-107, (1984). Zbl0536.60046MR723731
  9. [9] E. Haeusler - An exact rate of convergence in the Functional Limit Theorem for special Martingale difference array, Z. Wahrs. verw Gebiete, vol. 65, p.523-534, (1984). Zbl0539.60032MR736144
  10. [10] J.F. Le Gall - Sur le temps local d'intersection du mouvement brownien plan, et la méthode de renormalisation de Varadhan, Sém. Prob. XIX, Lect. Notes in Math., vol. 1123, Springer, Berlin, p.314-331, (1985). Zbl0563.60072MR889492
  11. [11] J.F. Le Gall - Some properties of Planar Brownian Motion, Ecole d'été de Saint-Flour XX, Lect. Notes in Math., vol. 1527, Springer, Berlin, (1992). Zbl0779.60068MR1229519
  12. [12] J.F. Le Gall - Marches aléatoires auto-évitantes et modèles de polymères, non publié. 
  13. [13] J.F. Le Gall - Exponential moments for the renormalized self-intersection local time of Planar Brownian Motion, Sém. Prob. XXVIII, Lect. Notes in Math., vol. 1583, Springer, Berlin, p.172-180, (1994). Zbl0810.60078MR1329112
  14. [14] J.W. Pitman, M. Yor - Appendice 1 de Quelques identités en loi pour les processus de Bessel, Société Mathématique de France, Astérisque, vol. 236, p.249-276, (1996). Zbl0863.60035MR1417987
  15. [15] D. Revuz, M. Yor - Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, (1991). Zbl0731.60002MR1083357
  16. [16] J. Rosen - A Local Time approach to the self-intersection of Brownian Motion Paths in Space, Comm. Math. Phys., vol. 88, p.327-338, (1983). Zbl0534.60070MR701921
  17. [17] J. Rosen - A renormalized Local Time for multiple intersection of Planar Brownian Motion, Sém. Prob. XX, Lect. Notes in Math., vol. 1204, Springer, Berlin, p.515-531, (1986). Zbl0611.60065MR942041
  18. [18] J. Rosen - Random Walks and intersection Local Time, Ann. Prob., vol. 18 no 3, p.959-977, (1990). Zbl0717.60057MR1062054
  19. [19] F. Spitzer - Principle of Random Walks, Van Nostrand, Princeton, New-York, (1964). 
  20. [20] A. Stoll - Invariance Principles for Brownian intersection Local Time and Polymer Measures, Math. Scand., vol. 64, p.133-160, (1989). Zbl0717.60043MR1036433
  21. [21] S.R.S. Varadhan - Appendix to Euclidean Quantum Field Theory, by K.Symanzik, in Local Quantum Theory, R.Jost (Ed.), Academic Press, New-York, (1969). 
  22. [22] W. Werner - Sur les singularités des temps locaux d'intersection du mouvement brownien plan, Ann. Inst. Henri Poincaré, vol. 29, no. 3, p.419-451, (1993). Zbl0798.60071MR1246640
  23. [23] J. Westwater - On Edward's Model for long Polymer Chain, Comm. Math. Phys., vol. 72, p.131-174, (1980). Zbl0431.60100MR573702
  24. [24] M. Yor - Sur la représentation comme intégrale stochastique du temps d'occupation du mouvement brownien dans Rd, Sém. Prob. XX, Lect. Notes in Math., vol. 1204, Springer, Berlin, p.543-552, (1986). Zbl0611.60067MR942043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.