Criteria of regularity at the end of a tree
Séminaire de probabilités de Strasbourg (1998)
- Volume: 32, page 128-136
Access Full Article
topHow to cite
topAmghibech, S.. "Criteria of regularity at the end of a tree." Séminaire de probabilités de Strasbourg 32 (1998): 128-136. <http://eudml.org/doc/113979>.
@article{Amghibech1998,
author = {Amghibech, S.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Dirichlet problem; Wiener's test; resistance; equilibrium potential; capacity},
language = {eng},
pages = {128-136},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Criteria of regularity at the end of a tree},
url = {http://eudml.org/doc/113979},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Amghibech, S.
TI - Criteria of regularity at the end of a tree
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 128
EP - 136
LA - eng
KW - Dirichlet problem; Wiener's test; resistance; equilibrium potential; capacity
UR - http://eudml.org/doc/113979
ER -
References
top- [1] Benjamini, I., AND Peres, Y.Random Walk on Tree and Capacity in the Interval. Ann. Inst. H. Poincaré sect B.28, 4 (1992), 557-592. Zbl0767.60061MR1193085
- [2] Benjamini, I., R. Pemantle, AND Y. Peres. Martin capacity for Markov chains. Ann. Probability. 23, 3 (1995), 1332-1346. Zbl0840.60068MR1349175
- [3] Cartier, P.Fonctions harmoniques sur un arbre. Symposia. Math. Acadi3 (1972), 203-270. Zbl0283.31005MR353467
- [4] Conway, J.Fonctions of One Complex Variable II. Springer-Verlag, 1995. Zbl0887.30003MR1344449
- [5] Doob, J.L.Classical Potential Theory. Springer-Verlag, 1984. Zbl0549.31001MR731258
- [6] Kaimanovich, V., AND Woess, W.The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality. Probab. Theory Relat. Fields91, 3-4 (1992), 445-466. Zbl0739.60004MR1151805
- [7] Lamperti, J.Wiener's Test and Markov Chains. J. Math. Anal. Appl.6 (1963), 58-66. Zbl0238.60044MR143258
- [8] Lyons, R.Random Walk and Percolation on Trees. Ann. Probability.18, 3 (1990), 931-958. Zbl0714.60089MR1062053
- [9] Revuz, D.Markov Chains. North Holland, 1975. Zbl0332.60045MR415773
- [10] Soardi, P.Potential Theory on Infinite Networks. Springer-Verlag, 1994. Zbl0818.31001MR1324344
- [11] Tsuji, M.Potential Theory in Modern Function Theory. Maruzen Co. LTD, Tokyo,1959. Zbl0087.28401MR114894
- [12] Woess, W.Behaviour at infinity and harmonic functions of random walks on graphs. Probability Mesures on Groups X. ed. H. HEYER Plenum Press, New York,1991. Zbl0821.60015MR1179003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.