Criteria of regularity at the end of a tree

S. Amghibech

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 128-136

How to cite


Amghibech, S.. "Criteria of regularity at the end of a tree." Séminaire de probabilités de Strasbourg 32 (1998): 128-136. <>.

author = {Amghibech, S.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Dirichlet problem; Wiener's test; resistance; equilibrium potential; capacity},
language = {eng},
pages = {128-136},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Criteria of regularity at the end of a tree},
url = {},
volume = {32},
year = {1998},

AU - Amghibech, S.
TI - Criteria of regularity at the end of a tree
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 128
EP - 136
LA - eng
KW - Dirichlet problem; Wiener's test; resistance; equilibrium potential; capacity
UR -
ER -


  1. [1] Benjamini, I., AND Peres, Y.Random Walk on Tree and Capacity in the Interval. Ann. Inst. H. Poincaré sect B.28, 4 (1992), 557-592. Zbl0767.60061MR1193085
  2. [2] Benjamini, I., R. Pemantle, AND Y. Peres. Martin capacity for Markov chains. Ann. Probability. 23, 3 (1995), 1332-1346. Zbl0840.60068MR1349175
  3. [3] Cartier, P.Fonctions harmoniques sur un arbre. Symposia. Math. Acadi3 (1972), 203-270. Zbl0283.31005MR353467
  4. [4] Conway, J.Fonctions of One Complex Variable II. Springer-Verlag, 1995. Zbl0887.30003MR1344449
  5. [5] Doob, J.L.Classical Potential Theory. Springer-Verlag, 1984. Zbl0549.31001MR731258
  6. [6] Kaimanovich, V., AND Woess, W.The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality. Probab. Theory Relat. Fields91, 3-4 (1992), 445-466. Zbl0739.60004MR1151805
  7. [7] Lamperti, J.Wiener's Test and Markov Chains. J. Math. Anal. Appl.6 (1963), 58-66. Zbl0238.60044MR143258
  8. [8] Lyons, R.Random Walk and Percolation on Trees. Ann. Probability.18, 3 (1990), 931-958. Zbl0714.60089MR1062053
  9. [9] Revuz, D.Markov Chains. North Holland, 1975. Zbl0332.60045MR415773
  10. [10] Soardi, P.Potential Theory on Infinite Networks. Springer-Verlag, 1994. Zbl0818.31001MR1324344
  11. [11] Tsuji, M.Potential Theory in Modern Function Theory. Maruzen Co. LTD, Tokyo,1959. Zbl0087.28401MR114894
  12. [12] Woess, W.Behaviour at infinity and harmonic functions of random walks on graphs. Probability Mesures on Groups X. ed. H. HEYER Plenum Press, New York,1991. Zbl0821.60015MR1179003

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.