Homogeneous diffusions on the Sierpinski gasket
Séminaire de probabilités de Strasbourg (1998)
- Volume: 32, page 86-107
Access Full Article
topHow to cite
topHeck, Matthias K.. "Homogeneous diffusions on the Sierpinski gasket." Séminaire de probabilités de Strasbourg 32 (1998): 86-107. <http://eudml.org/doc/114005>.
@article{Heck1998,
author = {Heck, Matthias K.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {fractals; diffusions; branching processes},
language = {eng},
pages = {86-107},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Homogeneous diffusions on the Sierpinski gasket},
url = {http://eudml.org/doc/114005},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Heck, Matthias K.
TI - Homogeneous diffusions on the Sierpinski gasket
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 86
EP - 107
LA - eng
KW - fractals; diffusions; branching processes
UR - http://eudml.org/doc/114005
ER -
References
top- 1. Barlow, M.T.and Perkins, E.A. (1988). Brownian motion on the Sierpinski gasket. Probab. Theory Related Fields79, 543-623. Zbl0635.60090MR966175
- 2. Bochner, S. (1955). Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley. Zbl0068.11702MR72370
- 3. Goldstein, S. (1987). Random walks and diffusions on fractals. In: Kesten, H. (ed.)Percolation theory and ergodic theory of infinite particle systems. (IMA Math. Appl., vol.8.) Springer, New York, p. 121-129. Zbl0621.60073MR894545
- 4. Hattori, K., Hattori, T. and Watanabe, H. (1994). Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets. Probab. Theory Related Fields100, 85-116. Zbl0808.60067MR1292192
- 5. Heck, M. (1996). A perturbation result for the asymptotic behavior of matrix powers. J. Theoret. Probability9, 647-658. Zbl0947.60502MR1400592
- 6. Karlin, S. (1966). A first course in stochastic processes. Academic Press, New York. Zbl0177.21102MR208657
- 7. Kumagai, T.Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket. In: Elworthy, K.D. and Ikeda, N. Asymptotic Problems in Probability Theory, Pitman. Zbl0787.60100
- 8. Kusuoka, S. (1987). A diffusion process on a fractal. In: Ito, K. and Ikeda, N. (eds.) Symposium on Probabilistic Methods in Mathematical Physics. Proceedings Taniguchi Symposium, Katata 1985. Academic Press, Amsterdam, p. 251-274. Zbl0645.60081MR933827
- 9. Lindstrøm, T. (1990). Brownian motion on nested fractals. Mem. Amer. Math. Soc.420. Zbl0688.60065MR988082
- 10. Mode, C.J. (1971). Multi type branching processes, American Elsevier Publishing Company, New York. Zbl0219.60061
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.