# The Divisibility Modulo 4 of Kloosterman Sums over Finite Fields of Characteristic 3

Serdica Journal of Computing (2011)

- Volume: 5, Issue: 1, page 1-14
- ISSN: 1312-6555

## Access Full Article

top## Abstract

top## How to cite

topSin, Changhyon. "The Divisibility Modulo 4 of Kloosterman Sums over Finite Fields of Characteristic 3." Serdica Journal of Computing 5.1 (2011): 1-14. <http://eudml.org/doc/11402>.

@article{Sin2011,

abstract = {Recently Garashuk and Lisonek evaluated Kloosterman sums
K (a) modulo 4 over a finite field F3m in the case of even K (a). They posed it as an open
problem to characterize elements a in F3m for which K (a) ≡ 1 (mod4) and K (a) ≡ 3 (mod4). In
this paper, we will give an answer to this problem. The result allows us to count the number of
elements a in F3m belonging to each of these two classes.},

author = {Sin, Changhyon},

journal = {Serdica Journal of Computing},

keywords = {Kloosterman Sums; Divisibility; Exponential Sum; Kloosterman sums; divisibility; exponential sum},

language = {eng},

number = {1},

pages = {1-14},

publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},

title = {The Divisibility Modulo 4 of Kloosterman Sums over Finite Fields of Characteristic 3},

url = {http://eudml.org/doc/11402},

volume = {5},

year = {2011},

}

TY - JOUR

AU - Sin, Changhyon

TI - The Divisibility Modulo 4 of Kloosterman Sums over Finite Fields of Characteristic 3

JO - Serdica Journal of Computing

PY - 2011

PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences

VL - 5

IS - 1

SP - 1

EP - 14

AB - Recently Garashuk and Lisonek evaluated Kloosterman sums
K (a) modulo 4 over a finite field F3m in the case of even K (a). They posed it as an open
problem to characterize elements a in F3m for which K (a) ≡ 1 (mod4) and K (a) ≡ 3 (mod4). In
this paper, we will give an answer to this problem. The result allows us to count the number of
elements a in F3m belonging to each of these two classes.

LA - eng

KW - Kloosterman Sums; Divisibility; Exponential Sum; Kloosterman sums; divisibility; exponential sum

UR - http://eudml.org/doc/11402

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.